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Highlight

Machine learning based surrogate models were developed and used to optimize the
selection of the trait parameters in ELM-FATES demographic vegetation model

Trait parameters selected by the surrogate models significantly improve the modeling of
plant functional type coexistence and reduce model errors.

This approach represents a repeatable method for identifying parameter values that
satisfy fidelity against observations and coexistence between functional types in

vegetation demography models.
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26  Abstract

27  Tropical forest dynamics play crucial roles in the global carbon, water, and energy cycles.
28  Dynamic global vegetation models are the primary tools to simulate terrestrial ecosystem
29  dynamics and their response to climate change. However, realistically simulating the dynamics of
30  competition and coexistence of differing plant functional traits within tropical forests remains a
31  significant challenge. This study aims to improve the modeling of plant functional type (PFT)
32 coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a
33 vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM)
34 land model (ELM), ELM-FATES. Specifically, we explore: (1) whether plant trait relationships
35  established from field measurements can constrain ELM-FATES simulations; and (2) whether
36  machine learning based surrogate models can emulate the complex ELM-FATES model and
37  optimize parameter selections to improve PFT coexistence modeling. We conducted ELM-FATES
38  experiments for a tropical forest site near Manaus, Brazil. We first conducted two ensembles of
39 ELM-FATES experiments, without (Exp-1) and with (Exp-2) consideration of observed trait
40  relationships, respectively. Considering the observed trait relationships (Exp-2) slightly improves
41  ELM-FATES simulations of water, energy, and carbon fluxes, but degrades the simulation of PFT
42 coexistence. Using eXtreme Gradient Boosting (XGBoost) based surrogate models trained on Exp-
43 1, we optimize the trait-related parameters in ELM-FATES to enable PFT coexistence and reduce
44 model errors relative to the field observations. We used parameters selected by the surrogate model
45 to conduct another ensemble of ELM-FATES experiments (Exp-3). The probability of
46  experiments yielding PFT coexistence greatly increases from 21% in Exp-1 to 73% in Exp-3.
47  Further filtering those experiments that allow for PFT coexistence to agree within 15% of the
48  observations, Exp-3 still has 33% of experiments left, much higher than the 1.4% in Exp-1. Exp-
49 3 also better reproduces the annual means and seasonal variations of water, energy and carbon
50  fluxes, and the field inventory of above ground biomass. Our study demonstrates the benefits of
51  using machine learning models to improve PFT coexistence modeling in ELM-FATES, with
52 important implications for modeling the response and feedback of ecosystem dynamics to climate
53  change. Our results also suggest that new mechanisms are required for robust simulation of
54  coexisting plants in FATES.

55
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56  Plain Language Summary

57  Modeling tropical forest dynamics is crucial for understanding global carbon, water, and energy
58  cycles under climate change. Dynamic global vegetation models, the primary tools to simulate
59  terrestrial ecosystem dynamics, face the challenge of realistically modeling the competition and
60  coexistence of different plant functional types (PFT). Our study explores whether (1) using plant
61  trait measurements and (2) developing machine learning based surrogate models to optimize
62  parameter selections can improve plant coexistence modeling. Using ELM-FATES as a testbed,
63  multiple ensembles of numerical experiments are conducted for a tropical forest site. We found
64  there is limited guidance of observed trait relationships for PFT coexistence modeling in ELM-
65  FATES. Trait parameters selected by the surrogate models significantly improve the modeling of
66  PFT coexistence and reduce model errors. We demonstrate the benefits of developing machine
67  learning based surrogate models to improve PFT coexistence modeling in ELM-FATES, with
68  important implications for modeling the response and feedback of ecosystem dynamics to climate
69  change. Our results also suggest that new mechanisms are required for robust simulation of
70  coexisting plants in ELM-FATES.

71
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72 1. Introduction

73 Tropical ecosystems feature the highest biodiversity on Earth, maintaining more than 75% of all
74  known species (Mora et al., 2011; Mitchard, 2018). The dynamics of tropical forests are closely
75  related to the regional and global carbon, energy and water cycles (Bonan, 2008; Piao et al., 2020).
76  Vegetation is expected to face more water stress from vapor pressure deficit increase and soil
77  moisture reduction with global warming (McDowell et al., 2020). Forest dynamics of tree
78  mortality are accelerating in some tropical regions due to the rising atmospheric water stress
79  (Bauman et al., 2022; Hubau et al., 2020; Zuleta et al., 2017). Tropical forests currently make an
80  approximately neutral contribution to the global carbon cycle as a result of a large land-use source
81  balanced by sinks in recovering and undisturbed forests, but they may become a carbon source in
82  the future under the threat of climate change and human-induced disturbance (Mitchard, 2018;
83  Qatti et al., 2021). Therefore, understanding and modeling tropical forest dynamics and related
84  feedbacks have crucial implications for projecting future changes in the global climate system.

85

86  Dynamic global vegetation models (DGVMs) are the primary tools to simulate terrestrial
87  ecosystem dynamics of plant functional type distribution, ecosystem composition and functioning,
88  and ecosystem response to and recovery from disturbance (e.g., fire and wind damage) (Longo et
89 al., 2019; Fisher et al., 2018; Foley et al., 1996; Sitch et al., 2003; Cao and Woodward, 1998;
90  Berzaghi et al., 2019; McMahon et al., 2011). Conventional DGVMs represent plant communities
91 wusing an area-averaged representation of plant functional types (PFTs) in each grid cell. Their
92  relatively simple structures have the advantage of high computational efficiency for use in Earth
93  system models (Fisher et al., 2018; Snell et al., 2014). However, these models do not capture many

94  demographic processes. For example, plants of each represented PFT typically have identical
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95  properties (e.g., tree size), which limits the capability of modeling ecosystem dynamics and

96  functioning of canopy gap formation, PFT competition, and disturbance reactions (Feeley et al.,

97  2007; Stark et al., 2012; Hurtt et al., 1998; Moorcroft, 2003; Brister et al., 2020). To overcome

98  these limitations, individual-based models, also known as forest gap models, explicitly represent

99  vegetation as individual plants and simulate their birth, growth, and death (Fyllas et al., 2014;
100  Christoffersen et al., 2016; Sato et al., 2007; Jonard et al., 2020; Maréchaux and Chave, 2017).
101  These models incorporate the stochasticity and heterogeneity of the plant light environment
102 mechanistically and thereby can typically represent PFT competitive exclusion, succession, and
103 coexistence. However, explicit simulations of individual plants with stochastic processes suffer a
104  substantial computational penalty and limit applicability over large or global scales (Fisher et al.,
105  2018). To capture sufficient ecosystem dynamics and maintain relatively high computational
106 efficiency, "cohort-based" models have been proposed (Haverd et al., 2013; Medvigy et al., 2009;
107  Maetal., 2021; Moorcroft et al., 2001; Longo et al., 2019). In a cohort-based approach, individual
108  plants are grouped together as "cohorts" based on their similar properties, including size, age, and
109  PFT (Fisher et al., 2018). Many cohort-based models have been developed and widely used across
110  regional to global scales. Examples of cohort-based models include the Ecosystem Demography
111  model (ED) (Moorcroft et al., 2001), the Functionally Assembled Terrestrial Ecosystem Simulator
112 (FATES) (Fisher et al., 2018, 2015), and the Geophysical Fluid Dynamics Laboratory (GFDL)
113 Land Model 3 with the Perfect Plasticity Approximation (LM3-PPA) (Weng et al., 2015). Among
114  these models, FATES has been widely used in modeling ecosystem dynamics for multiple
115  ecosystems, e.g., tropical (Holm et al., 2020; Koven et al., 2020; Cheng et al., 2021) and mixed-
116  conifer forests (Buotte et al., 2021), and forest disturbance (Huang et al., 2020).

117
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118  Despite ongoing applications, robust simulations of competition and coexistence in cohort-based
119 DGVMs remain a major challenge. In niche-based coexistence theory, coexisting species require
120  both convergence in strategy to adapt to the surrounding environment ("environmental filtering")
121  and divergence in strategy to ensure differentiation in resource requirements ("niche partitioning")
122 (Kraftetal., 2008; Adler et al., 2013). These same constraints apply to coexisting PFTs as modeled
123 by DGVMs. Thus, on the one hand, DGV MSs need to include mechanisms involving critical niche
124  dimensions (e.g., light, water, and nutrients). For example, the multi-layer canopy structure in
125  FATES provides vertical light resource differentiation. Another essential aspect is to assign
126  reasonable plant functional traits (i.e., the parameters that define a given plant functional type) to
127  satisfy environmental filtering, ensure niche partitioning, and consequently preserve PFT
128  coexistence. Considering the relatively high computational cost of DGVMs and the host land
129  surface models, it is not feasible to directly apply global optimization methods such as Shuffled
130  Complex Evolution (Duan et al., 1992) to calibrate trait-related parameters, because this could be
131  time-consuming and computationally intensive (Rouholahnejad et al., 2012). Therefore, most
132 previous studies use the filtered ensemble approach to select trait-related parameters involving
133 several steps: 1) generate a parameter ensemble based on reference trait ranges or correlations, 2)
134 conduct ensemble model simulations, and 3) filter the parameter ensemble by coexistence and
135  other criteria (e.g., observation constraints). For example, Huang et al. (2020) applied FATES
136  implemented in the Community Land Model (CLM; herein CLM-FATES) with two tropical PFTs
137  to study forest dynamics at tropical sites. They performed 70 one-at-a-time experiments before
138  obtaining one reasonable parameter set. Buottte et al. (2021) used CLM-FATES to simulate forest
139 dynamics of pine and incense cedar over the Sierra Nevada of California, and their two stages of

140  experiments (360 plus 72 runs) only yielded four sets of parameters that met the given criteria. The



https://doi.org/10.5194/egusphere-2022-1286
Preprint. Discussion started: 4 January 2023 EG U
sphere

(© Author(s) 2023. CC BY 4.0 License.

141  filtered ensemble approach has low efficiency, which hinders DGVMs' application to modeling
142 ecosystem dynamics under the changing climate. In addition, trait relationships derived from field
143 measurements are often used to infer parameter selections when simulating coexistence. For
144 example, Longo et al. (2020) used multiple trait relationships derived from various datasets to
145  guide parameter selection for different PFTs in the ED-2.2 model simulations. However, whether
146  the observed trait relationships can efficiently improve PFT coexistence simulation in current
147  DGVMs is still unclear.

148

149  Machine learning (ML) has facilitated Earth science studies (Shen, 2018; Nearing et al., 2021; Zhu
150 etal.,2022; Paletal.,2019; Jung etal., 2019), possibly providing a promising approach to improve
151  PFT coexistence modeling in DGVMs. ML algorithms have been broadly and successfully
152  employed in recent decades. They can be used as standalone models to predict variables of interest
153  or integrated with process-based models to improve simulations from the latter (Xu and Liang,
154  2021; He et al., 2022). Among these applications, ML has shown advantages as a surrogate model
155  for parameter optimization and sensitivity quantification, including its effectiveness and easy
156  application, its ability to implicitly deal with complex nonlinear correlations and high dimensional
157  data, and handle interactions between variables (Sit et al., 2020; Antoniadis et al., 2020; Tsai et al.,
158  2021). One promising approach is to construct ML-based surrogate models using data from initial
159  model simulations to emulate the relationship between inputs (i.e., model parameters) and model
160  outputs (Wang et al., 2014). Then the computationally inexpensive surrogate model can be
161  efficiently used for parameter optimization and sensitivity analysis. For example, Dagon et al.
162 (2020) implemented artificial neural networks to emulate the satellite leaf area constrained version

163  of CLMS5 (Lawrence et al., 2019) and estimated optimal parameters to improve the global
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164  simulation of gross primary production and latent heat flux. Sawada (2020) developed an ML
165  surrogate model to optimize the land surface model parameters and improve soil moisture and
166  vegetation dynamics simulations. Watson-Parris et al. (2021) built a general tool to efficiently
167  emulate Earth system models for uncertainty quantification and model calibration. Although
168  employing ML based surrogate models to optimize the trait parameters and hence improve the
169  vegetation dynamics modeling in DGVMs is promising, this area of research is still under-explored.
170

171  This study aims to improve PFT coexistence modeling in DGVMs. The cohort-based FATES
172 implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM; Golaz et al.,
173 2019), i.e., ELM-FATES, is taken as our testbed. The ELM land model simulates surface energy
174  fluxes, soil and canopy biophysics, hydrology, and soil biogeochemistry, whereas FATES
175  simulates live vegetation processes, litter dynamics, and fire. We first examine whether trait
176  relationships constructed from field measurements can help improve ELM-FATES simulations.
177  Second, we explore whether ML based surrogate models can help optimize key trait parameters in
178  ELM-FATES to improve the simulation of PFTs coexistence. Our model experiments are
179  conducted for a tropical rainforest site located in Manaus, Brazil. This paper is organized as
180  follows. Section 2 describes ELM-FATES, summarizes the key functional trait-related parameters,
181  introduces the machine learning algorithms, and explains the overall experimental design. Results
182  are presented in Section 3, followed by Discussions and Conclusions in Section 4 and Section 5,
183  respectively.

184
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185 2. Methodology

186 2.1 Study site and data

187  Our study site is located at kilometer 34 (K34) of the ZF2 road, Manaus, Brazil (latitude: -2.6091
188 S; longitude: -60.2093 W). The K34 site is an old-growth primary forest with minimal human
189  disturbances (Holm et al., 2020). The annual precipitation is about 2252 mm, and the mean
190  temperature is about 26.68 °C (https://ameriflux.lbl.gov/sites/siteinfo/BR-Ma2). The wet season is
191  from November to May, and the dry season is from June to October (Fang et al., 2017). Hourly
192  meteorological forcing (i.e., precipitation, air temperature, relative humidity, wind speed, surface
193  pressure) at the K34 eddy covariance flux tower from 2002-2005 was obtained from the LBA-
194  ECO CD-32 Flux Tower Network Data Compilation (Restrepo-Coupe et al., 2021). Observational
195  reference datasets obtained from Holm et al. (2020) include gross primary production (GPP),
196  evapotranspiration (ET), sensible heat flux (SH), Bowen ratio (BW, the ratio between sensible heat
197  and latent heat), and inventory data-based aboveground biomass (AGB). The GPP, ET, SH, and
198  BW observations are monthly climatological averages from 2000 to 2008 (Table S1). The AGB at
199  this site is about 303 + 2.3 Mg/ha. These observational data were used to evaluate the ELM-
200  FATES simulations and constrain the ML surrogate models.

201

202 2.2 ELM-FATES and parameters

203  ELM-FATES is used as the testbed. ELM is the land model of E3SM, which is the host land model
204  of FATES (Golaz et al., 2019; Leung et al., 2020; Holm et al., 2020). FATES is a size- and age-
205  structured vegetation model developed from the Community Land Model with ecosystem
206  demography (CLM-ED) (Fisher et al., 2015; Koven et al., 2020). FATES includes two key

207  structural components: ecosystem demography (ED; Moorcroft et al., 2001) and a modified

10
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208  version of perfect plasticity approximation (PPA, Purves et al., 2008). FATES discretizes the
209  simulated landscape into spatially implicit "patches" representing different disturbance histories
210  of the ecosystem since the last disturbance. Within each patch, the hypothetical population of
211  plants is grouped into "cohorts": a cohort consists of a population density of trees with similar size
212 and the same plant functional type. Cohorts are organized, via the PPA concept, into canopy layers,
213 and compete for light based on their canopy vertical positions (e.g., canopy layer vs. understory
214 layer). The understory layer is formed when the canopy area becomes greater than the total ground
215  area, and some fraction of each cohort is ‘demoted’ to the understory as a function of its height.
216  The number of patches and cohorts varies depending on processes, including recruitment, growth,
217  mortality, competition, and disturbance. The modified PPA probabilistically splits cohorts into
218  discrete canopy and understory layers based on a function of their height (Strigul et al., 2008;
219  Fisher et al., 2010). A detailed description of the FATES model can be found in its technical note
220  (Zenodo, https://doi.org/10.5281/zenodo.3517272).

221

222 In this study, we configured two PFTs in ELM-FATES, i.e., early successional and late
223 successional broadleaf evergreen tropical trees, which can represent a primary axis of variability
224 intropical forests (Huang et al., 2020; Reich, 2014; Diaz et al., 2016). There are tradeoffs between
225  the plant traits of these two PFTs. Compared with the late successional PFT, the early successional
226  PFT is more light-demanding and fast-growing, but with lower woody density, shorter leaf and
227  root lifespans, and higher background mortality. To represent the drought impacts on forest
228  dynamics, the early successional PFT is further assumed to be less drought resistant with shallower

229  rooting depth and hence more easily affected by drought conditions (Oliveira et al., 2021). The

11
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230  corresponding tradeoffs and parameters between these two PFTs are shown in Figure 1 and Table

231 1.

Early lation rate of Rub. at 25 °C | Late
successional PFT o successional PFT
I Specific leaf area |
N I Background mortality | [

Wood density G

|

| Leaf longevity NN =
_— Root longevity NN w—
|
|

Rooting depth
Drought resistance N

232

233 Figure 1. Schematic representation of tradeoffs between early and late successional PFTs. Dark
234 red denotes a higher parameter value. The tradeoffs of the top five traits are used to constrain the
235  parameter sampling.

236

237  Observational datasets have shown some correlations between plant traits. Therefore, we derived
238 three trait relationships based on the tropical studies of Koven et al. (2020) and Longo et al. (2020).
239  Using the digitized data from Figure 3 in Koven et al. (2020), background mortality M, (see table
240 1 for parameter definitions) can be empirically computed from V4,

241 My, = 0.0082 x e(0-0153%Vemax) (1)

242 Based on the equations in Figure S18 of Longo et al. (2020), Ljqr and WD can be calculated via

243 SLA,
244 Lieqr = 0.0001 X SLAC232) )
245 WD = —0.583 x In(SLA) — 1.6754 3)

12
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These trait relationships are used in parameter generation to test whether considering trait

relationships can help ELM-FATES to model PFT coexistence.

Table 1 Summary of ELM-FATES parameters for two PFTs

Parameter

type Parameter name Symbol Unit Early PFT  Late PFT Range
Maximum carboxylation rate of Rub. at 25 mol
uC’ Zanopy tOp chax ng/mz/s chux,early > chax,late 40-105
Specific leaf area, canopy top SLA m%gC SLAcariy > SLA e 0.005-0.04
Optimized Background mortality rate My 1/yr Mpiearty > Mpkiate 0.005-0.05
parameter
Wood density WD g/em? WDeqriy < WDiqte 0.2-1.0
Leaf longevity Lieas year Licaf.earty < Lieaf,iate 0.2-3.0
Maximum size of storage C pool, relative to g .
the maximum size of leaf C pool Rz same 0.8-1.5
Root longevity Lyoot year 0.9 2.6 —
Fine rooting distribution profile parameter a R, — 7 7 —
Fixed Fine rooting distribution profile parameter b R, — 2 0.4 —
1
parameter BTRAN threshold below which drought M o 04 1.OE-06 -
mortality begins. beran ’ R
Soil water potential at full stomatal closure Yelosure mm -113000 242000 —

*Parameter references (Huang et al., 2020; Koven et al., 2020; Longo et al., 2020; Holm et al., 2020; Cheng et al., 2021; Domingues et al.,
2005; Chitra-Tarak et al., 2021; Buotte et al., 2021)

*R, and R, are parameters that determine the rooting depth and vertical distribution of fine roots.

*BTRAN is the plant water stress factor. BTRAN € [0,1], 0 representing full water stress, | representing no water stress.

2.3 XGboost and SHAP

In this study, we built ML-based surrogate models to emulate ELM-FATES simulations. To
represent the nonlinear relationship between ELM-FATES parameters and the model outputs (e.g.,
ET), we used eXtreme Gradient Boosting (XGBoost; Chen and Guestrin, 2016), a decision-tree-
based ensemble machine learning algorithm. The boosting algorithm sequentially trains a set of
weak learners (e.g., decision trees) to the ensemble, with each successive learner correcting the
biases/mistakes of its predecessors. XGBoost is a highly efficient and scalable algorithm built on

the Gradient Boosting framework (Friedman, 2001). For instance, it not only handles complex

13
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263  nonlinear interactions and collinearity between different features (due to the decision tree's nature),
264  butalso provides a parallel implementation that effectively solves a range of data science problems.
265  XGBoost has been successfully applied in a variety of fields within Earth and Environmental
266  Sciences, such as urban temperature emulation (Zheng et al., 2021b), wildfire burned area (Wang
267 etal., 2021), and emissions prediction (Wang et al., 2022), flash flood risk assessment (Ma et al.,
268  2021), and aerosol property estimation (Zheng et al., 2021a, c).

269

270  We performed parameter sensitivity analysis to understand which trait parameters are essential for
271  ELM-FATES simulations. A game theoretic approach called SHapley Additive exPlanations
272 (SHAP; Lundberg and Lee, 2017; Lundberg et al., 2018, 2020) was used to interpret the trained
273  XGBoost models and identify the relative importance of features. This approach assumes that
274  features (predictive variables) interact to participate in a game of prediction. The features receive
275  apayout for their contributions as a result of this collaboration. Compared to the intrinsic feature
276  importance methods (for example, feature importance in XGBoost), SHAP uses a unified measure
277  of feature importance to explain both individual samples and the entire dataset (Lundberg and Lee,
278  2017). This novel approach has been used to interpret a digital soil mapping model (Padarian et
279  al., 2020) and identify the critical drivers of wildfires (Wang et al., 2021). Specifically, we
280  performed SHAP analysis for each XGBoost model, and applied the SHAP value as a proxy to
281  quantify the relative importance of different FATES parameters.

282

283

14
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287
288
289
290
291
292

293

294

2.4 Overall experimental design

Our experimental design flowchart is shown in Figure 2. Procedure "P1" in Fig. 2 is used to
generate an ensemble of parameter values for each experiment ensemble, i.e., Exp-1, Exp-2, and
Exp-3. First, a number of initial parameter sets (e.g., 5000 sets) were generated using Latin
Hypercube Sampling (LHS; Mckay et al., 2000). Second, the initial parameter sets were filtered
by the trait tradeoffs between early and late successional PFTs (Figure 1). We repeatedly increased
the number of initial parameter sets in the first step until 1500 parameter sets were obtained in the
second step. Each ELM-FATES experiment starts from bare ground and runs for 350 years to
reach an equilibrium state, by cycling the meteorological forcing during 20022005, and the last

four years of the simulations were analyzed.

P2. Initial FATES experiments

| Exp-2 |
Fewer

| Par-2 FATES Out-2 coexistence
| A 1500 ensembles —)[ELM-FATES}—) 1500 ensembles J 7/ *
0 Coexistence
P1. Parameter sampling - analysi
. N lysis
Trait relationships h
v
. . Par-1 FATES Out-1
Latin hypercube sampling ?] 1500 ensembles —)LELM—FATES J—» 1500 ensembles ||| | More
} coexistence
Tradeoffs between Exp-1
early PFT vs. late PFT

N

Visualization analysis:

parameter correlations of  [€—] /
coexistent er bl Xi Y; (e.g., GPP)

Build
5
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\ XGBoost models > ]
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A
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A 1l:ter T i v / performance analysis analysis
| Exp-3 | 1500 ensembles P3. Build ML models & sensitivity analysis
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295 Figure 2. Overall flowchart of experimental design and associated analysis.

296  To test whether plant trait relationships established from field measurements can improve the
297  ELM-FATES simulations, two sets of experiment ensembles, i.e., Exp-1 and Exp-2 (procedure
298  "P2"in Figure 2), were conducted using two parameter ensembles (i.e., Par-1 and Par-2). For Par-
299 1, 1500 parameter sets were generated from procedure "P1" based on the entire eleven parameters'
300 space (i.e., Vemaxearty> Vemaxiate» SLAearty, SLAiate s Mprearty s Mpriates WDearty » WDiate »
301 Lieafeartys Lieaf,iates CRs2;1 ). For Par-2, 1500 parameter sets were generated from procedure "P1"
302 but only based on five parameters' space (i.€., Vemax,eartys Vemax,iates SLAearty, SLAates CRs21).
303 The other six parameters (Mpy earty> Mpiiates WDearty, WDiate, Liear earty> Lieag iate,) 1 Par-2
304  were calculated based on the traits relationships defined by Equations (1) ~ (3). Therefore,
305  compared to Par-1, the parameters in Par-2 are constrained by the observed trait relationships. The
306 distributions of these two parameter sets are shown in Figure S1. V4., SLA, and CR,,; have
307  similar distributions between Par-1 and Par-2. Compared with Par-1, Par-2 has a narrower
308  distribution of My, but broader distributions of WD and Lieqy.

309

310  Exp-1 and Exp-2 each include 1500 350-year ELM-FATES simulations. We averaged the last four
311  years of these simulations for analysis, i.e., outputs: Out-1 and Out-2, respectively. To quantify
312 the PFT coexistence, we computed the biomass ratio between early successional PFT and the total
313  biomass, denoted as BR,,;. For brevity, we denote the ELM-FATES experiments with BR; €
314  [0.1,0.9] as “coexistence”, BR,,; € [0.0,0.1) as “late”, BR.,, € (0.9,1.0] as “early”. We
315  calculated BR,,; based on Out-1 and Out-2, and then computed the fraction of coexistence
316  experiments in each ensemble. As we will show in section 3.1, considering the observed trait

317  relationships, Exp-2 has a lower fraction of coexistence experiments. Therefore, only Exp-1 was
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318 used for further ML-related analysis. We also performed some analysis of Exp-1 to explore
319  whether the parameters of the coexistence experiments have correlations with each other (Section
320 3.2).

321

322 Based on Exp-1, we trained XGBoost models to emulate the ELM-FATES model behavior and
323  analyzed the parameter sensitivity using SHAP (procedure "P3" in Figure 2). Sixteen variables
324  were used as XGBoost model features, including 11 parameters in Par-1 and 5 parameter
325  differences between early and late successional PFTs. The corresponding ELM-FATES annual
326  average outputs were used as XGBoost model targets. Specifically, six models were built, i.e.,
327 XGB _ET, XGB_SH, XGB_BW, XGB_GPP, XGB_AGB, XGB_BR for predicting ET, SH, BW,
328 GPP, AGB, and BR,,;, respectively. Taking BR,,;as an example, the 1500 pairs of sixteen
329  features and the corresponding simulated BR,,; were randomly split into two groups, 90% used
330 for training and the remaining 10% used for testing. In the simulations of Exp-1, the coexistence
331  experiments only account for 20.6% (see Section 3.1 for details). Therefore, 90% of data is used
332 for training to ensure sufficient coexisting samples used in the training process. The choice of
333  hyperparameters in the XGBoost model can significantly impact its performance. In training, we
334 used the Bayesian optimization method to efficiently tune the XGBoost model (Snoek et al., 2012).
335  Additionally, a five-fold cross-validation method was utilized to avoid overfitting in the
336  hyperparameters optimization (Feigl et al., 2021), and the mean squared error was used as the
337  objective function. The root mean squared error (RMSE) and R-squared (R?) are used to quantify
338  the overall XGBoost model performance for the training and testing data prediction. Furthermore,
339  based on the trained XGBoost models, we applied SHAP to identify feature importance to quantify

340  the parameter sensitivity of ELM-FATES.
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341

342 The trained XGBoost models were then used to help select ELM-FATES parameters (procedure
343 "P4" in Figure 2). First, initial parameter sets were generated from procedure "P1" based on the
344  entire eleven parameters' space (Table 1, identical to the parameters' space used for the generation
345  of Par-1). Second, these parameter sets and parameter differences were sent to six XGBoost
346  surrogate models to predict ET, SH, BW, GPP, AGB, and BR,,;. Third, the predictions were
347  further filtered by two criteria: (1) compared to observations, the relative biases of the predicted
348 ET, SH, BW, GPP, and AGB should be less than 15%; (2) the XGBoost model predicted BR,;;
349  should be within [0.3, 0.7]. We repeated these three steps until we obtained 1500 sets of XGBoost
350  model predictions that match the criteria. Finally, we obtained 1500 sets of XGBoost model
351  predictions and their corresponding 1500 sets of parameters (Par-3). We also checked whether the
352 selected Par-3 can match the empirical relationships derived from the empirical analysis in
353  procedure "P2" (see Sections 3.2 and 3.5 for details). Then, the 1500 sets of parameters in Par-3
354  were sent to ELM-FATES to conduct 350-year runs (i.e., Exp-3). The last four years of the
355  simulations were averaged (i.e., Out-3) for further analysis. We then compared Out-3 with
356  observations and analyzed the PFT coexistence to obtain the optimal ELM-FATES parameters.
357

358
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359 3. Results

360 3.1 Comparison between Exp-1 and Exp-2

361 Constraining the input traits using the observed trait relationships yields slightly better ELM-
362  FATES simulations of water, energy, and carbon variables (Figures 3a~3e). The distributions of
363  the relative biases of ET, SH, BW, and GPP have similar ranges between the two sets of
364  experiments (Figures 3a~3d). Compared with Exp-1, the 50" percentiles of relative biases of ET,
365 SH, BW and GPP for Exp-2 (with constrained traits) are closer to zero, indicating Exp-2 is slightly
366  Dbetter than Exp-1. The distribution of simulated AGB for Exp-2 is much narrower than Exp-1
367  (Figure 3e), which could be due to the narrower distribution of My, (Figure S1).

368  Exp-1 has a much higher fraction of PFT coexisting simulations than Exp-2 (Figure 3f and Table
369  S2). Overall, 70.6 % of experiments in Exp-1, and 94.5% of experiments in EXP-2 have high
370  simulated BR,,; that is greater than 0.9. This indicates that both Par-1 and especially Par-2 favor
371  the early successional PFT. As for the coexisting experiments with BR,,; € [0.1,0.9], Exp-1 has
372  about five times more coexisting experiments (20.6%) than Exp-2 (4.1%). Further filtering the
373  coexisting cases by observations (Table S1), only 21 experiments remain in Exp-1, and 6
374  experiments in Exp-2 (Table S2). Even though Exp-2 considered the observed trait relationships,
375 it has fewer coexisting cases within the reasonable observation ranges than Exp-1. Therefore, Exp-

376 2 isnotused in our remaining analysis.
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378  Figure 3. Distribution of ELM-FATES simulations for Exp-1 and Exp-2. The y-axis in (f) is

. . . . simulation—observation
379  logarithmic. Relative bias =

X 100 (%). In (a)~(e), the top horizontal

observation

380  bars with three vertical lines denote the relative bias at the 25%, 50, and 75 percentiles,

381  respectively. The grey shaded area in (f) represents the coexistence biomass ratio between 0.1
382 and 0.9.

383 3.2 Parameter analysis of Exp-1

384  We also tested whether simple parameter correlations can be constructed to guide the simulation
385  of PFTs coexistence. No simple parameter correlations can be built to distinguish the coexisting
386  cases from the early and late cases in Exp-1 (Figures 4, S2, and S3). Most parameter (or parameter
387 difference) spaces show large overlaps between early, late, and coexisting cases (Figures S2 and
388  S3). Notably, we empirically built three linear equations based on the boundaries in the parameter
389  spaces for the coexisting cases (Figure 4). Coexisting cases are primarily located in spaces with
390 SLAjge > 0.35 X SLAggry + 0.003 (Figures 4a and 4d), Vemaxairr < —4800 X SLAg;rr +

391 100 (Figures 4b and 4e), and WDg;rr > 55 X SLA4;,f — 1.3 (Figures 4c and 4f), where
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392 chax,diff = chax,early - chax,late . and SLAdlff and WDdlff are defined likewise. Within

393  these constrained parameter spaces, the percentage of coexisting cases increases from the original
394 20.6% (i.e., 309 out of 1500) to 32.6% (i.e., 304 out of 932). Therefore, these empirical correlations
395  could help guide ELM-FATES parameter selection for coexisting PFTs. On the other hand, a
396  dominant proportion (i.e., 67.4% (1-32.6%)) of experiments are still either early or late cases
397  within the constrained parameter spaces and cannot robustly predict PFT coexistence. Moreover,
398  despite further considering the observational constraints (black scatters in Figure 4; Table S2), the
399 21 experiments (2.3%, 21 out of 932) are still sparsely distributed in the parameters' space of the
400  coexisting cases, so no simple correlations can be developed based on these simulations. Therefore,
401  simple empirically built relationships between plant traits provide limited benefit to guiding ELM-
402  FATES parameter selection for modeling PFTs coexistence while matching the observations. This

403  finding provides additional motivation for the ML-based approaches.
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405  Figure 4. Relationships between selected parameters of Par-1. These parameters are presented in
406  three groups, i.e., green color for the late cases with BR,,; € [0.0,0.1), orange color for the
407  coexisting cases with BR,,; € [0.1,0.9], and blue color for the early cases with BR,,; € (0.9,1.0].
408  Black star represents coexistence cases further filtered by observational constraints. (d)~(f) are the
409  corresponding kernel density estimate plots of the scatter plots (a)~(¢). Vemax,aiff = Vemax,earty —
410 Vemaxiate- SLAgirr and WDy, ¢ are defined likewise.

411

412 3.3 XGBoost model performance

413 Opverall, the XGBoost surrogate models show good performance in predicting ELM-FATES
414  simulations (Figure 5). Based on Exp-1 (i.e., Par-1 and Out-1), six XGBoost models were trained.
415  In training, the RMSEs for the six models are zero or nearly zero, and R?s are close to one. In the
416  testing, four XGBoost models (i.e., XGB_ET, XGB_SH, XGB_BW, XGB_GPP) still show good
417  performance with small RMSE and large R? (>0.95). XGB_AGB shows a little degradation with
418  R? of 0.88. The performance of XGB_BR also shows degradation with R? decreasing from 1.0 in
419  training to 0.75 in testing. XGB_BR cannot well predict the ELM-FATES simulated BR,,; of 0
420  or | when only one PFT survives. This indicates that PFT competition processes in ELM-FATES,
421  which determine BR,,; and AGB, are highly nonlinear and difficult to emulate even using a state-

422 of-the-art machine learning algorithm.
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Figure 5. The performance of XGBoost surrogate models in the training and testing for

predicting (a) ET, (b) SH, (c) BW, (d) GPP, (¢) AGB, and (f) BRoy;.

3.4 SHAP parameter importance analysis

Figure 6 shows the feature importance, including parameters and parameter differences, for
different XGBoost models. Features (on the y-axis) with a higher mean absolute SHAP value (on
the x-axis) denote a larger contribution to the XGBoost model prediction. The number of most
important features is different for predicting ET, SH, BW, and GPP compared with predicting
AGB and BR,,;.

For the XGBoost models that predict ET, SH, BW, and GPP, the top three features have the largest
SHAP values compared to the rest (Figures 6a~5d). Notably, these top three features are the same
and correspond to the early successional PFT, i.e., Vemax earty> SLAearty: Licaf earty- Most ELM-
FATES experiments in Exp-1 used as the training samples for the XGBoost models are early cases.

Therefore, the parameters of early successional PFT have dominant contributions in the XGBoost
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438  model predictions of overall grid-level fluxes. These three parameters are positively correlated
439  with ET and GPP and negatively correlated with SH and BW (red vs. blue bars in Figures 6a~d;
440  Figure S4 for more details), reflecting the fundamental carbon metabolism of the typically
441  dominant early successional plant.

442 For the XGBoost surrogate models of AGB and BR,,;, more than eight features have large SHAP
443 values (Figures 6e and 6f). Both early and late successional PFT parameters contribute to
444  predicting the two variables. Compared with the predictions of ET, SH, BW, and GPP with only
445  three major features, predicting AGB and BR,,; is relatively more complex. This is because AGB
446  and particularly BR,,, are closely related to the PFT competition process in which both the early
447  and late PFT traits are crucial. Especially for BR,,;, the most important features are the parameter
448  difference between the early and late successional PFTs. For example, SLAg;ff is positively
449  correlated to BR,,;. Therefore, to have coexisting PFTs with BR,,¢ € [0.1,0.9], the SLA of two

450  PFTs should neither be too large nor too small.
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Figure 6. Mean absolute SHAP values for different XGBoost surrogate models for the top ten most

important features. Absolute SHAP values are sorted in decreasing order from top to bottom. For

each feature (y-axis) in each XGBoost model, the Spearman correlation coefficient is calculated

between the feature values and the corresponding SHAP values (Figure S4). The red color means

that a given feature is positively correlated with the predicting variable, whereas blue denotes a

negative correlation.
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458 3.5 XGBoost model parameter selection

459  Using the XGBoost surrogate models, the Par-3 ensemble was selected, including 1500 sets of
460  parameters and the corresponding parameter differences between the early and late successional
461  PFTs(Section 2.4, procedure "P4" in Figure 2). We examined whether Par-3 matches the empirical
462  relationships shown in Figure 4 (Section 3.2), i.e., SLAjqr > 0.35 X SLA.4ry + 0.003
463 Vemaxaiff < —4800 X SLAg;rr + 100, and WDg;rr > 55 X SLAgirr — 1.3 . In total, 99.1%
464 (1486 out of 1500) of parameter sets are consistent with the empirical relationships, indicating the
465  XGBoost models implicitly learned these simple relationships.

466  The parameter distributions of Par-3 show different patterns from the early/late parameters of Par-
467 1 (green vs. blue regions in Figure 7), but there are large overlaps between the coexistence
468  parameters of Par-1 and Par-3 (orange vs. green regions, e.g., the third column in Figure 7). This
469 indicates that the XGBoost surrogate models learned to select parameters around the parameters'
470  space of the coexisting cases. Par-3 also tends to have a smaller parameter difference between the
471  early and late successional PFTs in terms of SLA ;¢ and Vepay aifs- However, Par-3 also shows
472  different patterns from the coexisting parameters of Par-1, probably because the XGBoost selected
473  parameters were also constrained by multiple observations and implicitly considered parameter
474  tradeoffs. For example, the Vipax eariy a0d Vinay 1ate 0f Par-3 are located in narrower ranges than

475  the coexisting parameters of Par-1 (first two columns in Figure 6).
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Figure 7. Comparison of parameter or parameter difference in Par-1 vs. Par-3 for eleven features.
The diagonal plots represent each parameter's distribution, and the rest of the subplots are kernel
density estimate plots. There are three groups, i.e., blue for the early/late cases of Par-1, orange for

the coexisting cases of Par-1, and green for Par-3 selected by XGBoost models.
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482 3.6 Validation of ML selected parameters

483  ELM-FATES simulations of Exp-3 based on the ensemble parameters of Par-3 selected by the
484  XGBoost surrogate models can better capture the observations and have more coexisting cases
485  than Exp-1 (Figure 8). The median values of simulated variables for Exp-3 are closer to
486  observations with relative biases closer to zero than Exp-1 (Figure 8a, blue vs. green boxes). The
487  Exp-3 simulated variables also have more concentrated distributions than Exp-1. Compared to the
488  skewed distribution of BR,,; in Exp-1 with a large proportion of early cases, Exp-3 has a more
489  normally distributed BR,,; (Figure 8b). Specifically, Exp-3 has about 3.6 times more coexisting
490  cases than Exp-1, i.e., 73.1% (1097 out of 1500) in Exp-3 vs. 20.6% (309 out of 1500) in Exp-1
491  (Table S3). After being further constrained by observation (Table S3), one-third of the experiments
492  (i.e., 495 out of 1500) in Exp-3 remain, and this ratio is 23.6 times more than 1.4% (21 out of 1500)
493  in Exp-1.

494  The XGBoost surrogate model predicted variables also match well with those simulated using
495  ELM-FATES in Exp-3 (Figure 8, orange vs. green boxes), indicating the overall reasonable
496  accuracy for the XGBoost model predictions. Compared to the ELM-FATES results using Par-3,
497  the XGBoost models show better performance for ET, SH, BW, and GPP, but relatively degraded
498  performance for AGB and BR,,; (Figure S5). It is consistent with the performance of the XGBoost

499  models' training and testing results (in Section 3.3).
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501  Figure 8. Comparison between the ELM-FATES simulations for Exp-1 and Exp-3. (a) Relative
502  bias for simulated ET, SH, BW, GPP, and AGB. (b) Simulated BR,,;. XGBoost prediction
503  represents the selected XGBoost model predictions after filtering with observation and biomass
504  ratio (i.e., the XGB_prds, procedure "P4" in Figure 2).

505

506 3.7 Parameter tradeoff for coexisting experiments

507  Parameters of the early and late successional PFTs show tradeoffs for the coexisting experiments.
508  Large relative differences in SLA, V.4, and WD (more negative) favor the early successional
509  PFT, while large relative differences in My, and L;.qf favor the late successional PFT. Therefore,
510 in Exp-1, compared to the early and late cases, the coexisting cases have intermediate relative
511  differences in SLA, Voynax, WD, My and Ly, (dashed boxes in Figure 9). The coexisting cases
512 in Exp-3 have similar patterns with intermediate relative differences in SLA, Vopmax and Ligqf
513  compared to the early and late cases (solid boxes in Figure 9). However, M, and especially WD

514  show the largest relative difference for the coexisting cases compared to the early and late cases
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515  in Exp-3. These two parameters still show a tradeoff in determining coexisting PFTs, because
516  larger WD favors the early PFT while larger M, favors the late PFT.
517
518  In Exp-3, the parameter spaces of the coexisting cases show large overlaps with the early/late cases
519  (Figure S6). There are no simple correlations between these parameters to distinguish the
520 coexisting cases from the early and late cases (also see Section 3.2). Although WDy of the
521 coexisting cases still overlap with the early/late cases, when WDy is less than roughly —0.4
522 (g/em?), only coexisting cases exist (Figure S6). Nevertheless, this rule (i.e., WDg; ¢y <-0.4) alone
523  cannot ensure PFT coexistence (see Figure 7).
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525  Figure 9. Parameter relative difference (%) between early successional PFT and late successional
526  PFT for Exp-1 (box with dash line) and Exp-3 (box with solid line). Parameter relative difference
. . SLAearly_SLAlate 0,
527 s calculated as, taking SLA as an example, OLAvarty+SLAco)]2 X 100 (%).
528
529
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530 3.8 Seasonal variation comparison

531  Figure 10 shows the seasonal variations of ET, SH, BW, and GPP for observations and simulations
532 ofthe finally selected 495 experiments in Exp-3 with good model performance (Table S3). Overall,
533  the simulated ET shows a similar seasonal variation to ET observation (Figure 10a), with relatively
534 small ET in the wet season (November—May), high ET in the dry season (June—October), and ET
535 peaks in August. However, compared to the observations, ELM-FATES overestimates ET,
536  especially during the wet season. The simulated SH also shows a similar seasonal variation with
537  the SH observation except in March. ELM-FATES overestimated SH from January to May but
538  underestimated SH from September to December (Figure 10b). Due to the discrepancy between
539  simulated ET and SH, the model underestimates BW from September to December (Figure 10c¢).

540  The simulated GPP has minor seasonal variability compared to the observed GPP. ELM-FATES
541  overestimates GPP from June—August in the dry season, but underestimates GPP over October—
542  December. The lower GPP over June—August indicates that plants may be relatively water-stressed
543  or energy limited during these months. However, the large ET observation over the same period
544  implies that this site is unlikely water limited or strongly energy limited. The ELM-FATES
545  simulations also 