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Highlight 17 

• Machine learning based surrogate models were developed and used to optimize the 18 

selection of the trait parameters in ELM-FATES demographic vegetation model 19 

• Trait parameters selected by the surrogate models significantly improve the modeling of 20 

plant functional type coexistence and reduce model errors. 21 

• This approach represents a repeatable method for identifying parameter values that 22 

satisfy fidelity against observations and coexistence between functional types in 23 

vegetation demography models. 24 
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Abstract  26 

Tropical forest dynamics play crucial roles in the global carbon, water, and energy cycles. 27 

Dynamic global vegetation models are the primary tools to simulate terrestrial ecosystem 28 

dynamics and their response to climate change. However, realistically simulating the dynamics of 29 

competition and coexistence of differing plant functional traits within tropical forests remains a 30 

significant challenge. This study aims to improve the modeling of plant functional type (PFT) 31 

coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a 32 

vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM) 33 

land model (ELM), ELM-FATES. Specifically, we explore: (1) whether plant trait relationships 34 

established from field measurements can constrain ELM-FATES simulations; and (2) whether 35 

machine learning based surrogate models can emulate the complex ELM-FATES model and 36 

optimize parameter selections to improve PFT coexistence modeling. We conducted ELM-FATES 37 

experiments for a tropical forest site near Manaus, Brazil. We first conducted two ensembles of 38 

ELM-FATES experiments, without (Exp-1) and with (Exp-2) consideration of observed trait 39 

relationships, respectively. Considering the observed trait relationships (Exp-2) slightly improves 40 

ELM-FATES simulations of water, energy, and carbon fluxes, but degrades the simulation of PFT 41 

coexistence. Using eXtreme Gradient Boosting (XGBoost) based surrogate models trained on Exp-42 

1, we optimize the trait-related parameters in ELM-FATES to enable PFT coexistence and reduce 43 

model errors relative to the field observations. We used parameters selected by the surrogate model 44 

to conduct another ensemble of ELM-FATES experiments (Exp-3). The probability of 45 

experiments yielding PFT coexistence greatly increases from 21% in Exp-1 to 73% in Exp-3. 46 

Further filtering those experiments that allow for PFT coexistence to agree within 15% of the 47 

observations, Exp-3 still has 33% of experiments left, much higher than the 1.4% in Exp-1. Exp-48 

3 also better reproduces the annual means and seasonal variations of water, energy and carbon 49 

fluxes, and the field inventory of above ground biomass. Our study demonstrates the benefits of 50 

using machine learning models to improve PFT coexistence modeling in ELM-FATES, with 51 

important implications for modeling the response and feedback of ecosystem dynamics to climate 52 

change. Our results also suggest that new mechanisms are required for robust simulation of 53 

coexisting plants in FATES. 54 
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Plain Language Summary 56 

Modeling tropical forest dynamics is crucial for understanding global carbon, water, and energy 57 

cycles under climate change. Dynamic global vegetation models, the primary tools to simulate 58 

terrestrial ecosystem dynamics, face the challenge of realistically modeling the competition and 59 

coexistence of different plant functional types (PFT). Our study explores whether (1) using plant 60 

trait measurements and (2) developing machine learning based surrogate models to optimize 61 

parameter selections can improve plant coexistence modeling. Using ELM-FATES as a testbed, 62 

multiple ensembles of numerical experiments are conducted for a tropical forest site. We found 63 

there is limited guidance of observed trait relationships for PFT coexistence modeling in ELM-64 

FATES. Trait parameters selected by the surrogate models significantly improve the modeling of 65 

PFT coexistence and reduce model errors. We demonstrate the benefits of developing machine 66 

learning based surrogate models to improve PFT coexistence modeling in ELM-FATES, with 67 

important implications for modeling the response and feedback of ecosystem dynamics to climate 68 

change. Our results also suggest that new mechanisms are required for robust simulation of 69 

coexisting plants in ELM-FATES. 70 
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1. Introduction 72 

Tropical ecosystems feature the highest biodiversity on Earth, maintaining more than 75% of all 73 

known species (Mora et al., 2011; Mitchard, 2018). The dynamics of tropical forests are closely 74 

related to the regional and global carbon, energy and water cycles (Bonan, 2008; Piao et al., 2020). 75 

Vegetation is expected to face more water stress from vapor pressure deficit increase and soil 76 

moisture reduction with global warming (McDowell et al., 2020). Forest dynamics of tree 77 

mortality are accelerating in some tropical regions due to the rising atmospheric water stress 78 

(Bauman et al., 2022; Hubau et al., 2020; Zuleta et al., 2017). Tropical forests currently make an 79 

approximately neutral contribution to the global carbon cycle as a result of a large land-use source 80 

balanced by sinks in recovering and undisturbed forests, but they may become a carbon source in 81 

the future under the threat of climate change and human-induced disturbance (Mitchard, 2018; 82 

Gatti et al., 2021). Therefore, understanding and modeling tropical forest dynamics and related 83 

feedbacks have crucial implications for projecting future changes in the global climate system. 84 

 85 

Dynamic global vegetation models (DGVMs) are the primary tools to simulate terrestrial 86 

ecosystem dynamics of plant functional type distribution, ecosystem composition and functioning, 87 

and ecosystem response to and recovery from disturbance (e.g., fire and wind damage) (Longo et 88 

al., 2019; Fisher et al., 2018; Foley et al., 1996; Sitch et al., 2003; Cao and Woodward, 1998; 89 

Berzaghi et al., 2019; McMahon et al., 2011). Conventional DGVMs represent plant communities 90 

using an area-averaged representation of plant functional types (PFTs) in each grid cell. Their 91 

relatively simple structures have the advantage of high computational efficiency for use in Earth 92 

system models (Fisher et al., 2018; Snell et al., 2014). However, these models do not capture many 93 

demographic processes. For example, plants of each represented PFT typically have identical 94 
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properties (e.g., tree size), which limits the capability of modeling ecosystem dynamics and 95 

functioning of canopy gap formation, PFT competition, and disturbance reactions (Feeley et al., 96 

2007; Stark et al., 2012; Hurtt et al., 1998; Moorcroft, 2003; Brister et al., 2020). To overcome 97 

these limitations, individual-based models, also known as forest gap models, explicitly represent 98 

vegetation as individual plants and simulate their birth, growth, and death (Fyllas et al., 2014; 99 

Christoffersen et al., 2016; Sato et al., 2007; Jonard et al., 2020; Maréchaux and Chave, 2017). 100 

These models incorporate the stochasticity and heterogeneity of the plant light environment 101 

mechanistically and thereby can typically represent PFT competitive exclusion, succession, and 102 

coexistence. However, explicit simulations of individual plants with stochastic processes suffer a 103 

substantial computational penalty and limit applicability over large or global scales (Fisher et al., 104 

2018). To capture sufficient ecosystem dynamics and maintain relatively high computational 105 

efficiency, "cohort-based" models have been proposed (Haverd et al., 2013; Medvigy et al., 2009; 106 

Ma et al., 2021; Moorcroft et al., 2001; Longo et al., 2019). In a cohort-based approach, individual 107 

plants are grouped together as "cohorts" based on their similar properties, including size, age, and 108 

PFT (Fisher et al., 2018). Many cohort-based models have been developed and widely used across 109 

regional to global scales. Examples of cohort-based models include the Ecosystem Demography 110 

model (ED) (Moorcroft et al., 2001), the Functionally Assembled Terrestrial Ecosystem Simulator 111 

(FATES) (Fisher et al., 2018, 2015), and the Geophysical Fluid Dynamics Laboratory (GFDL) 112 

Land Model 3 with the Perfect Plasticity Approximation (LM3-PPA) (Weng et al., 2015). Among 113 

these models, FATES has been widely used in modeling ecosystem dynamics for multiple 114 

ecosystems, e.g., tropical (Holm et al., 2020; Koven et al., 2020; Cheng et al., 2021) and mixed-115 

conifer forests (Buotte et al., 2021), and forest disturbance (Huang et al., 2020).  116 

 117 
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Despite ongoing applications, robust simulations of competition and coexistence in cohort-based 118 

DGVMs remain a major challenge. In niche-based coexistence theory, coexisting species require 119 

both convergence in strategy to adapt to the surrounding environment ("environmental filtering") 120 

and divergence in strategy to ensure differentiation in resource requirements ("niche partitioning") 121 

(Kraft et al., 2008; Adler et al., 2013). These same constraints apply to coexisting PFTs as modeled 122 

by DGVMs. Thus, on the one hand, DGVMs need to include mechanisms involving critical niche 123 

dimensions (e.g., light, water, and nutrients). For example, the multi-layer canopy structure in 124 

FATES provides vertical light resource differentiation. Another essential aspect is to assign 125 

reasonable plant functional traits (i.e., the parameters that define a given plant functional type) to 126 

satisfy environmental filtering, ensure niche partitioning, and consequently preserve PFT 127 

coexistence. Considering the relatively high computational cost of DGVMs and the host land 128 

surface models, it is not feasible to directly apply global optimization methods such as Shuffled 129 

Complex Evolution (Duan et al., 1992) to calibrate trait-related parameters, because this could be 130 

time-consuming and computationally intensive (Rouholahnejad et al., 2012). Therefore, most 131 

previous studies use the filtered ensemble approach to select trait-related parameters involving 132 

several steps: 1) generate a parameter ensemble based on reference trait ranges or correlations, 2) 133 

conduct ensemble model simulations, and 3) filter the parameter ensemble by coexistence and 134 

other criteria (e.g., observation constraints). For example, Huang et al. (2020) applied FATES 135 

implemented in the Community Land Model (CLM; herein CLM-FATES) with two tropical PFTs 136 

to study forest dynamics at tropical sites. They performed 70 one-at-a-time experiments before 137 

obtaining one reasonable parameter set. Buottte et al. (2021) used CLM-FATES to simulate forest 138 

dynamics of pine and incense cedar over the Sierra Nevada of California, and their two stages of 139 

experiments (360 plus 72 runs) only yielded four sets of parameters that met the given criteria. The 140 
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filtered ensemble approach has low efficiency, which hinders DGVMs' application to modeling 141 

ecosystem dynamics under the changing climate. In addition, trait relationships derived from field 142 

measurements are often used to infer parameter selections when simulating coexistence. For 143 

example, Longo et al. (2020) used multiple trait relationships derived from various datasets to 144 

guide parameter selection for different PFTs in the ED-2.2 model simulations. However, whether 145 

the observed trait relationships can efficiently improve PFT coexistence simulation in current 146 

DGVMs is still unclear. 147 

 148 

Machine learning (ML) has facilitated Earth science studies (Shen, 2018; Nearing et al., 2021; Zhu 149 

et al., 2022; Pal et al., 2019; Jung et al., 2019), possibly providing a promising approach to improve 150 

PFT coexistence modeling in DGVMs. ML algorithms have been broadly and successfully 151 

employed in recent decades. They can be used as standalone models to predict variables of interest 152 

or integrated with process-based models to improve simulations from the latter (Xu and Liang, 153 

2021; He et al., 2022). Among these applications, ML has shown advantages as a surrogate model 154 

for parameter optimization and sensitivity quantification, including its effectiveness and easy 155 

application, its ability to implicitly deal with complex nonlinear correlations and high dimensional 156 

data, and handle interactions between variables (Sit et al., 2020; Antoniadis et al., 2020; Tsai et al., 157 

2021). One promising approach is to construct ML-based surrogate models using data from initial 158 

model simulations to emulate the relationship between inputs (i.e., model parameters) and model 159 

outputs (Wang et al., 2014). Then the computationally inexpensive surrogate model can be 160 

efficiently used for parameter optimization and sensitivity analysis. For example, Dagon et al. 161 

(2020) implemented artificial neural networks to emulate the satellite leaf area constrained version 162 

of CLM5 (Lawrence et al., 2019) and estimated optimal parameters to improve the global 163 
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simulation of gross primary production and latent heat flux. Sawada (2020) developed an ML 164 

surrogate model to optimize the land surface model parameters and improve soil moisture and 165 

vegetation dynamics simulations. Watson-Parris et al. (2021) built a general tool to efficiently 166 

emulate Earth system models for uncertainty quantification and model calibration. Although 167 

employing ML based surrogate models to optimize the trait parameters and hence improve the 168 

vegetation dynamics modeling in DGVMs is promising, this area of research is still under-explored. 169 

 170 

This study aims to improve PFT coexistence modeling in DGVMs. The cohort-based FATES 171 

implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM; Golaz et al., 172 

2019), i.e., ELM-FATES, is taken as our testbed. The ELM land model simulates surface energy 173 

fluxes, soil and canopy biophysics, hydrology, and soil biogeochemistry, whereas FATES 174 

simulates live vegetation processes, litter dynamics, and fire. We first examine whether trait 175 

relationships constructed from field measurements can help improve ELM-FATES simulations. 176 

Second, we explore whether ML based surrogate models can help optimize key trait parameters in 177 

ELM-FATES to improve the simulation of PFTs coexistence. Our model experiments are 178 

conducted for a tropical rainforest site located in Manaus, Brazil. This paper is organized as 179 

follows. Section 2 describes ELM-FATES, summarizes the key functional trait-related parameters, 180 

introduces the machine learning algorithms, and explains the overall experimental design. Results 181 

are presented in Section 3, followed by Discussions and Conclusions in Section 4 and Section 5, 182 

respectively. 183 

  184 
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2. Methodology 185 

2.1 Study site and data  186 

Our study site is located at kilometer 34 (K34) of the ZF2 road, Manaus, Brazil (latitude: -2.6091 187 

S; longitude: -60.2093 W). The K34 site is an old-growth primary forest with minimal human 188 

disturbances (Holm et al., 2020). The annual precipitation is about 2252 mm, and the mean 189 

temperature is about 26.68 °C (https://ameriflux.lbl.gov/sites/siteinfo/BR-Ma2). The wet season is 190 

from November to May, and the dry season is from June to October (Fang et al., 2017). Hourly 191 

meteorological forcing (i.e., precipitation, air temperature, relative humidity, wind speed, surface 192 

pressure) at the K34 eddy covariance flux tower from 2002–2005 was obtained from the LBA-193 

ECO CD-32 Flux Tower Network Data Compilation (Restrepo-Coupe et al., 2021). Observational 194 

reference datasets obtained from Holm et al. (2020) include gross primary production (GPP), 195 

evapotranspiration (ET), sensible heat flux (SH), Bowen ratio (BW, the ratio between sensible heat 196 

and latent heat), and inventory data-based aboveground biomass (AGB). The GPP, ET, SH, and 197 

BW observations are monthly climatological averages from 2000 to 2008 (Table S1). The AGB at 198 

this site is about 303 ± 2.3 Mg/ha. These observational data were used to evaluate the ELM-199 

FATES simulations and constrain the ML surrogate models. 200 

 201 

2.2 ELM-FATES and parameters 202 

ELM-FATES is used as the testbed. ELM is the land model of E3SM, which is the host land model 203 

of FATES (Golaz et al., 2019; Leung et al., 2020; Holm et al., 2020). FATES is a size- and age-204 

structured vegetation model developed from the Community Land Model with ecosystem 205 

demography (CLM-ED) (Fisher et al., 2015; Koven et al., 2020). FATES includes two key 206 

structural components: ecosystem demography (ED; Moorcroft et al., 2001) and a modified 207 
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version of perfect plasticity approximation (PPA, Purves et al., 2008). FATES discretizes the 208 

simulated landscape into spatially implicit "patches" representing different disturbance histories 209 

of the ecosystem since the last disturbance. Within each patch, the hypothetical population of 210 

plants is grouped into "cohorts": a cohort consists of a population density of trees with similar size 211 

and the same plant functional type. Cohorts are organized, via the PPA concept, into canopy layers, 212 

and compete for light based on their canopy vertical positions (e.g., canopy layer vs. understory 213 

layer). The understory layer is formed when the canopy area becomes greater than the total ground 214 

area, and some fraction of each cohort is ‘demoted’ to the understory as a function of its height. 215 

The number of patches and cohorts varies depending on processes, including recruitment, growth, 216 

mortality, competition, and disturbance. The modified PPA probabilistically splits cohorts into 217 

discrete canopy and understory layers based on a function of their height (Strigul et al., 2008; 218 

Fisher et al., 2010). A detailed description of the FATES model can be found in its technical note 219 

(Zenodo, https://doi.org/10.5281/zenodo.3517272). 220 

 221 

In this study, we configured two PFTs in ELM-FATES, i.e., early successional and late 222 

successional broadleaf evergreen tropical trees, which can represent a primary axis of variability 223 

in tropical forests (Huang et al., 2020; Reich, 2014; Díaz et al., 2016). There are tradeoffs between 224 

the plant traits of these two PFTs. Compared with the late successional PFT, the early successional 225 

PFT is more light-demanding and fast-growing, but with lower woody density, shorter leaf and 226 

root lifespans, and higher background mortality. To represent the drought impacts on forest 227 

dynamics, the early successional PFT is further assumed to be less drought resistant with shallower 228 

rooting depth and hence more easily affected by drought conditions (Oliveira et al., 2021). The 229 
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corresponding tradeoffs and parameters between these two PFTs are shown in Figure 1 and Table 230 

1. 231 

 232 

Figure 1. Schematic representation of tradeoffs between early and late successional PFTs. Dark 233 

red denotes a higher parameter value. The tradeoffs of the top five traits are used to constrain the 234 

parameter sampling. 235 

 236 

Observational datasets have shown some correlations between plant traits. Therefore, we derived 237 

three trait relationships based on the tropical studies of Koven et al. (2020) and Longo et al. (2020). 238 

Using the digitized data from Figure 3 in Koven et al. (2020), background mortality 𝑀!" (see table 239 

1 for parameter definitions) can be empirically computed from 𝑉#$%&, 240 

𝑀!" = 0.0082 × 𝑒((.(*+,×.!"#$)                                                    (1) 241 

Based on the equations in Figure S18 of Longo et al. (2020), 𝐿01%2 and WD can be calculated via 242 

SLA, 243 

𝐿01%2 = 0.0001 × 𝑆𝐿𝐴(34.,4)                                                    (2) 244 

𝑊𝐷 = −0.583 × ln(𝑆𝐿𝐴) − 1.6754                                               (3) 245 
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These trait relationships are used in parameter generation to test whether considering trait 246 

relationships can help ELM-FATES to model PFT coexistence. 247 

 248 

Table 1 Summary of ELM-FATES parameters for two PFTs 249 

Parameter 
type Parameter name Symbol Unit Early PFT Late PFT Range 

Optimized 
parameter 

Maximum carboxylation rate of Rub. at 25 
ºC, canopy top 𝑉!"#$ µmol 

CO2/m2/s 
𝑉!"#$,&#'() > 𝑉!"#$,(#*& 40–105 

Specific leaf area, canopy top SLA m2/gC 𝑆𝐿𝐴&#'() > 𝑆𝐿𝐴(#*& 0.005–0.04 

Background mortality rate 𝑀+, 1/yr 𝑀+,,&#'() > 𝑀+,,(#*& 0.005–0.05 

Wood density WD g/cm3 𝑊𝐷&#'() < 𝑊𝐷(#*& 0.2–1.0 

Leaf longevity 𝐿(&#- year 𝐿(&#-,&#'() < 𝐿(&#-,(#*& 0.2–3.0 

Maximum size of storage C pool, relative to 
the maximum size of leaf C pool 𝐶𝑅./( –– same 0.8–1.5 

Fixed 
parameter 

Root longevity 𝐿'00* year 0.9 2.6 –– 

Fine rooting distribution profile parameter a 𝑅# –– 7 7 –– 

Fine rooting distribution profile parameter b 𝑅+ –– 2 0.4 –– 

BTRAN threshold below which drought 
mortality begins. 𝑀+*'#1 –– 0.4 1.0E-06 –– 

Soil water potential at full stomatal closure 𝜓!(0.2'& mm –113000 –242000 –– 
*Parameter references (Huang et al., 2020; Koven et al., 2020; Longo et al., 2020; Holm et al., 2020; Cheng et al., 2021; Domingues et al., 250 
2005; Chitra‐Tarak et al., 2021; Buotte et al., 2021) 251 
*𝑅# and 𝑅+ are parameters that determine the rooting depth and vertical distribution of fine roots. 252 
*BTRAN is the plant water stress factor. BTRAN ∈ [0,1], 0 representing full water stress, 1 representing no water stress. 253 

 254 

2.3 XGboost and SHAP 255 

In this study, we built ML-based surrogate models to emulate ELM-FATES simulations. To 256 

represent the nonlinear relationship between ELM-FATES parameters and the model outputs (e.g., 257 

ET), we used eXtreme Gradient Boosting (XGBoost; Chen and Guestrin, 2016), a decision-tree-258 

based ensemble machine learning algorithm. The boosting algorithm sequentially trains a set of 259 

weak learners (e.g., decision trees) to the ensemble, with each successive learner correcting the 260 

biases/mistakes of its predecessors. XGBoost is a highly efficient and scalable algorithm built on 261 

the Gradient Boosting framework (Friedman, 2001). For instance, it not only handles complex 262 
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nonlinear interactions and collinearity between different features (due to the decision tree's nature), 263 

but also provides a parallel implementation that effectively solves a range of data science problems. 264 

XGBoost has been successfully applied in a variety of fields within Earth and Environmental 265 

Sciences, such as urban temperature emulation (Zheng et al., 2021b), wildfire burned area (Wang 266 

et al., 2021), and emissions prediction (Wang et al., 2022), flash flood risk assessment (Ma et al., 267 

2021), and aerosol property estimation (Zheng et al., 2021a, c).  268 

 269 

We performed parameter sensitivity analysis to understand which trait parameters are essential for 270 

ELM-FATES simulations. A game theoretic approach called SHapley Additive exPlanations 271 

(SHAP; Lundberg and Lee, 2017; Lundberg et al., 2018, 2020) was used to interpret the trained 272 

XGBoost models and identify the relative importance of features. This approach assumes that 273 

features (predictive variables) interact to participate in a game of prediction. The features receive 274 

a payout for their contributions as a result of this collaboration. Compared to the intrinsic feature 275 

importance methods (for example, feature importance in XGBoost), SHAP uses a unified measure 276 

of feature importance to explain both individual samples and the entire dataset (Lundberg and Lee, 277 

2017). This novel approach has been used to interpret a digital soil mapping model (Padarian et 278 

al., 2020) and identify the critical drivers of wildfires (Wang et al., 2021). Specifically, we 279 

performed SHAP analysis for each XGBoost model, and applied the SHAP value as a proxy to 280 

quantify the relative importance of different FATES parameters. 281 

 282 

  283 
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2.4 Overall experimental design 284 

Our experimental design flowchart is shown in Figure 2. Procedure "P1" in Fig. 2 is used to 285 

generate an ensemble of parameter values for each experiment ensemble, i.e., Exp-1, Exp-2, and 286 

Exp-3. First, a number of initial parameter sets (e.g., 5000 sets) were generated using Latin 287 

Hypercube Sampling (LHS; Mckay et al., 2000). Second, the initial parameter sets were filtered 288 

by the trait tradeoffs between early and late successional PFTs (Figure 1). We repeatedly increased 289 

the number of initial parameter sets in the first step until 1500 parameter sets were obtained in the 290 

second step. Each ELM-FATES experiment starts from bare ground and runs for 350 years to 291 

reach an equilibrium state, by cycling the meteorological forcing during 2002–2005, and the last 292 

four years of the simulations were analyzed. 293 

 294 
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Figure 2. Overall flowchart of experimental design and associated analysis. 295 

To test whether plant trait relationships established from field measurements can improve the 296 

ELM-FATES simulations, two sets of experiment ensembles, i.e., Exp-1 and Exp-2 (procedure 297 

"P2" in Figure 2), were conducted using two parameter ensembles (i.e., Par-1 and Par-2). For Par-298 

1, 1500 parameter sets were generated from procedure "P1" based on the entire eleven parameters' 299 

space (i.e., 𝑉#$%&,1%607 , 𝑉#$%&,0%81 , 𝑆𝐿𝐴1%607 , 𝑆𝐿𝐴0%81 , 𝑀!",1%607 , 𝑀!",0%81 , 𝑊𝐷1%607 , 𝑊𝐷0%81 , 300 

𝐿01%2,1%607, 𝐿01%2,0%81, 𝐶𝑅940 ). For Par-2, 1500 parameter sets were generated from procedure "P1" 301 

but only based on five parameters' space (i.e., 𝑉#$%&,1%607, 𝑉#$%&,0%81, 𝑆𝐿𝐴1%607, 𝑆𝐿𝐴0%81, 𝐶𝑅940). 302 

The other six parameters (𝑀!",1%607, 𝑀!",0%81, 𝑊𝐷1%607, 𝑊𝐷0%81, 𝐿01%2,1%607, 𝐿01%2,0%81,) in Par-2 303 

were calculated based on the traits relationships defined by Equations (1) ~ (3). Therefore, 304 

compared to Par-1, the parameters in Par-2 are constrained by the observed trait relationships. The 305 

distributions of these two parameter sets are shown in Figure S1. 𝑉#$%& , SLA, and 𝐶𝑅940  have 306 

similar distributions between Par-1 and Par-2. Compared with Par-1, Par-2 has a narrower 307 

distribution of 𝑀!" but broader distributions of 𝑊𝐷 and 𝐿01%2. 308 

 309 

Exp-1 and Exp-2 each include 1500 350-year ELM-FATES simulations. We averaged the last four 310 

years of these simulations for analysis, i.e., outputs: Out-1 and Out-2, respectively. To quantify 311 

the PFT coexistence, we computed the biomass ratio between early successional PFT and the total 312 

biomass, denoted as 𝐵𝑅148. For brevity, we denote the ELM-FATES experiments with 𝑩𝑹𝒆𝟐𝒕 ∈313 

[𝟎. 𝟏, 𝟎. 𝟗] as “coexistence”, 𝑩𝑹𝒆𝟐𝒕 ∈ [𝟎. 𝟎, 𝟎. 𝟏) as “late”, 𝑩𝑹𝒆𝟐𝒕 ∈ (𝟎. 𝟗, 𝟏. 𝟎] as “early”. We 314 

calculated 𝐵𝑅148  based on Out-1 and Out-2, and then computed the fraction of coexistence 315 

experiments in each ensemble. As we will show in section 3.1, considering the observed trait 316 

relationships, Exp-2 has a lower fraction of coexistence experiments. Therefore, only Exp-1 was 317 
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used for further ML-related analysis. We also performed some analysis of Exp-1 to explore 318 

whether the parameters of the coexistence experiments have correlations with each other (Section 319 

3.2). 320 

 321 

Based on Exp-1, we trained XGBoost models to emulate the ELM-FATES model behavior and 322 

analyzed the parameter sensitivity using SHAP (procedure "P3" in Figure 2). Sixteen variables 323 

were used as XGBoost model features, including 11 parameters in Par-1 and 5 parameter 324 

differences between early and late successional PFTs. The corresponding ELM-FATES annual 325 

average outputs were used as XGBoost model targets. Specifically, six models were built, i.e., 326 

XGB_ET, XGB_SH, XGB_BW, XGB_GPP, XGB_AGB, XGB_BR for predicting ET, SH, BW, 327 

GPP, AGB, and 𝐵𝑅148 , respectively. Taking 𝐵𝑅148 as an example, the 1500 pairs of sixteen 328 

features and the corresponding simulated 𝐵𝑅148 were randomly split into two groups, 90% used 329 

for training and the remaining 10% used for testing. In the simulations of Exp-1, the coexistence 330 

experiments only account for 20.6% (see Section 3.1 for details). Therefore, 90% of data is used 331 

for training to ensure sufficient coexisting samples used in the training process. The choice of 332 

hyperparameters in the XGBoost model can significantly impact its performance. In training, we 333 

used the Bayesian optimization method to efficiently tune the XGBoost model (Snoek et al., 2012). 334 

Additionally, a five-fold cross-validation method was utilized to avoid overfitting in the 335 

hyperparameters optimization (Feigl et al., 2021), and the mean squared error was used as the 336 

objective function. The root mean squared error (RMSE) and R-squared (R2) are used to quantify 337 

the overall XGBoost model performance for the training and testing data prediction. Furthermore, 338 

based on the trained XGBoost models, we applied SHAP to identify feature importance to quantify 339 

the parameter sensitivity of ELM-FATES. 340 
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 341 

The trained XGBoost models were then used to help select ELM-FATES parameters (procedure 342 

"P4" in Figure 2). First, initial parameter sets were generated from procedure "P1" based on the 343 

entire eleven parameters' space (Table 1, identical to the parameters' space used for the generation 344 

of Par-1). Second, these parameter sets and parameter differences were sent to six XGBoost 345 

surrogate models to predict ET, SH, BW, GPP, AGB, and 𝐵𝑅148 . Third, the predictions were 346 

further filtered by two criteria: (1) compared to observations, the relative biases of the predicted 347 

ET, SH, BW, GPP, and AGB should be less than 15%; (2) the XGBoost model predicted 𝐵𝑅148 348 

should be within [0.3, 0.7]. We repeated these three steps until we obtained 1500 sets of XGBoost 349 

model predictions that match the criteria. Finally, we obtained 1500 sets of XGBoost model 350 

predictions and their corresponding 1500 sets of parameters (Par-3). We also checked whether the 351 

selected Par-3 can match the empirical relationships derived from the empirical analysis in 352 

procedure "P2" (see Sections 3.2 and 3.5 for details). Then, the 1500 sets of parameters in Par-3 353 

were sent to ELM-FATES to conduct 350-year runs (i.e., Exp-3). The last four years of the 354 

simulations were averaged (i.e., Out-3) for further analysis. We then compared Out-3 with 355 

observations and analyzed the PFT coexistence to obtain the optimal ELM-FATES parameters. 356 

 357 

  358 
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3. Results 359 

3.1 Comparison between Exp-1 and Exp-2 360 

Constraining the input traits using the observed trait relationships yields slightly better ELM-361 

FATES simulations of water, energy, and carbon variables (Figures 3a~3e). The distributions of 362 

the relative biases of ET, SH, BW, and GPP have similar ranges between the two sets of 363 

experiments (Figures 3a~3d). Compared with Exp-1, the 50th percentiles of relative biases of ET, 364 

SH, BW and GPP for Exp-2 (with constrained traits) are closer to zero, indicating Exp-2 is slightly 365 

better than Exp-1. The distribution of simulated AGB for Exp-2 is much narrower than Exp-1 366 

(Figure 3e), which could be due to the narrower distribution of 𝑀!" (Figure S1). 367 

Exp-1 has a much higher fraction of PFT coexisting simulations than Exp-2 (Figure 3f and Table 368 

S2). Overall, 70.6 % of experiments in Exp-1, and 94.5% of experiments in EXP-2 have high 369 

simulated 𝐵𝑅148 that is greater than 0.9. This indicates that both Par-1 and especially Par-2 favor 370 

the early successional PFT. As for the coexisting experiments with 𝐵𝑅148 ∈ [0.1, 0.9], Exp-1 has 371 

about five times more coexisting experiments (20.6%) than Exp-2 (4.1%). Further filtering the 372 

coexisting cases by observations (Table S1), only 21 experiments remain in Exp-1, and 6 373 

experiments in Exp-2 (Table S2). Even though Exp-2 considered the observed trait relationships, 374 

it has fewer coexisting cases within the reasonable observation ranges than Exp-1. Therefore, Exp-375 

2 is not used in our remaining analysis. 376 

https://doi.org/10.5194/egusphere-2022-1286
Preprint. Discussion started: 4 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 20 

 377 

Figure 3. Distribution of ELM-FATES simulations for Exp-1 and Exp-2. The y-axis in (f) is 378 

logarithmic. 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑏𝑖𝑎𝑠 = 9=$>0%8=?@3?!916A%8=?@	
?!916A%8=?@

× 100	(%). In (a)~(e), the top horizontal 379 

bars with three vertical lines denote the relative bias at the 25th, 50th, and 75th percentiles, 380 

respectively. The grey shaded area in (f) represents the coexistence biomass ratio between 0.1 381 

and 0.9. 382 

3.2 Parameter analysis of Exp-1 383 

We also tested whether simple parameter correlations can be constructed to guide the simulation 384 

of PFTs coexistence. No simple parameter correlations can be built to distinguish the coexisting 385 

cases from the early and late cases in Exp-1 (Figures 4, S2, and S3). Most parameter (or parameter 386 

difference) spaces show large overlaps between early, late, and coexisting cases (Figures S2 and 387 

S3). Notably, we empirically built three linear equations based on the boundaries in the parameter 388 

spaces for the coexisting cases (Figure 4). Coexisting cases are primarily located in spaces with 389 

𝑆𝐿𝐴0%81 > 0.35 × 𝑆𝐿𝐴1%607 + 0.003  (Figures 4a and 4d), 𝑉#$%&,C=22 < −4800 × 𝑆𝐿𝐴C=22 +390 

	100  (Figures 4b and 4e), and 𝑊𝐷C=22 > 55 × 𝑆𝐿𝐴C=22 − 1.3  (Figures 4c and 4f), where 391 
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𝑉#$%&,C=22 = 𝑉#$%&,1%607 − 𝑉#$%&,0%81 , and 𝑆𝐿𝐴C=22  and 𝑊𝐷C=22  are defined likewise. Within 392 

these constrained parameter spaces, the percentage of coexisting cases increases from the original 393 

20.6% (i.e., 309 out of 1500) to 32.6% (i.e., 304 out of 932). Therefore, these empirical correlations 394 

could help guide ELM-FATES parameter selection for coexisting PFTs. On the other hand, a 395 

dominant proportion (i.e., 67.4% (1–32.6%)) of experiments are still either early or late cases 396 

within the constrained parameter spaces and cannot robustly predict PFT coexistence. Moreover, 397 

despite further considering the observational constraints (black scatters in Figure 4; Table S2), the 398 

21 experiments (2.3%, 21 out of 932) are still sparsely distributed in the parameters' space of the 399 

coexisting cases, so no simple correlations can be developed based on these simulations. Therefore, 400 

simple empirically built relationships between plant traits provide limited benefit to guiding ELM-401 

FATES parameter selection for modeling PFTs coexistence while matching the observations. This 402 

finding provides additional motivation for the ML-based approaches. 403 

 404 
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Figure 4. Relationships between selected parameters of Par-1. These parameters are presented in 405 

three groups, i.e., green color for the late cases with 𝐵𝑅148 ∈ [0.0,0.1), orange color for the 406 

coexisting cases with 𝐵𝑅148 ∈ [0.1,0.9], and blue color for the early cases with 𝐵𝑅148 ∈ (0.9,1.0]. 407 

Black star represents coexistence cases further filtered by observational constraints. (d)~(f) are the 408 

corresponding kernel density estimate plots of the scatter plots (a)~(c). 𝑉#$%&,C=22 = 𝑉#$%&,1%607 −409 

𝑉#$%&,0%81. 𝑆𝐿𝐴C=22 and 𝑊𝐷C=22 are defined likewise. 410 

 411 

3.3 XGBoost model performance 412 

Overall, the XGBoost surrogate models show good performance in predicting ELM-FATES 413 

simulations (Figure 5). Based on Exp-1 (i.e., Par-1 and Out-1), six XGBoost models were trained. 414 

In training, the RMSEs for the six models are zero or nearly zero, and 𝑅4s are close to one. In the 415 

testing, four XGBoost models (i.e., XGB_ET, XGB_SH, XGB_BW, XGB_GPP) still show good 416 

performance with small RMSE and large 𝑅4 (>0.95). XGB_AGB shows a little degradation with 417 

𝑅4 of 0.88. The performance of XGB_BR also shows degradation with 𝑅4 decreasing from 1.0 in 418 

training to 0.75 in testing. XGB_BR cannot well predict the ELM-FATES simulated 𝐵𝑅148 of 0 419 

or 1 when only one PFT survives. This indicates that PFT competition processes in ELM-FATES, 420 

which determine 𝐵𝑅148 and AGB, are highly nonlinear and difficult to emulate even using a state-421 

of-the-art machine learning algorithm. 422 
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 423 

Figure 5. The performance of XGBoost surrogate models in the training and testing for 424 

predicting (a) ET, (b) SH, (c) BW, (d) GPP, (e) AGB, and (f) 𝐵𝑅148. 425 

 426 

3.4 SHAP parameter importance analysis 427 

Figure 6 shows the feature importance, including parameters and parameter differences, for 428 

different XGBoost models. Features (on the y-axis) with a higher mean absolute SHAP value (on 429 

the x-axis) denote a larger contribution to the XGBoost model prediction. The number of most 430 

important features is different for predicting ET, SH, BW, and GPP compared with predicting 431 

AGB and 𝐵𝑅148. 432 

For the XGBoost models that predict ET, SH, BW, and GPP, the top three features have the largest 433 

SHAP values compared to the rest (Figures 6a~5d). Notably, these top three features are the same 434 

and correspond to the early successional PFT, i.e., 𝑉#$%&,1%607, 𝑆𝐿𝐴1%607, 𝐿01%2,1%607. Most ELM-435 

FATES experiments in Exp-1 used as the training samples for the XGBoost models are early cases. 436 

Therefore, the parameters of early successional PFT have dominant contributions in the XGBoost 437 
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model predictions of overall grid-level fluxes. These three parameters are positively correlated 438 

with ET and GPP and negatively correlated with SH and BW (red vs. blue bars in Figures 6a~d; 439 

Figure S4 for more details), reflecting the fundamental carbon metabolism of the typically 440 

dominant early successional plant. 441 

For the XGBoost surrogate models of AGB and 𝐵𝑅148, more than eight features have large SHAP 442 

values (Figures 6e and 6f). Both early and late successional PFT parameters contribute to 443 

predicting the two variables. Compared with the predictions of ET, SH, BW, and GPP with only 444 

three major features, predicting AGB and 𝐵𝑅148 is relatively more complex. This is because AGB 445 

and particularly 𝐵𝑅148 are closely related to the PFT competition process in which both the early 446 

and late PFT traits are crucial. Especially for 𝐵𝑅148, the most important features are the parameter 447 

difference between the early and late successional PFTs. For example, 𝑆𝐿𝐴C=22  is positively 448 

correlated to 𝐵𝑅148. Therefore, to have coexisting PFTs with 𝐵𝑅148 ∈ [0.1,0.9], the SLA of two 449 

PFTs should neither be too large nor too small. 450 
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 451 

Figure 6. Mean absolute SHAP values for different XGBoost surrogate models for the top ten most 452 

important features. Absolute SHAP values are sorted in decreasing order from top to bottom. For 453 

each feature (y-axis) in each XGBoost model, the Spearman correlation coefficient is calculated 454 

between the feature values and the corresponding SHAP values (Figure S4). The red color means 455 

that a given feature is positively correlated with the predicting variable, whereas blue denotes a 456 

negative correlation.  457 
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3.5 XGBoost model parameter selection  458 

Using the XGBoost surrogate models, the Par-3 ensemble was selected, including 1500 sets of 459 

parameters and the corresponding parameter differences between the early and late successional 460 

PFTs (Section 2.4, procedure "P4" in Figure 2). We examined whether Par-3 matches the empirical 461 

relationships shown in Figure 4 (Section 3.2), i.e., 𝑆𝐿𝐴0%81 > 0.35 × 𝑆𝐿𝐴1%607 + 0.003 , 462 

𝑉#$%&,C=22 < −4800 × 𝑆𝐿𝐴C=22 + 	100 , and 𝑊𝐷C=22 > 55 × 𝑆𝐿𝐴C=22 − 1.3 . In total, 99.1% 463 

(1486 out of 1500) of parameter sets are consistent with the empirical relationships, indicating the 464 

XGBoost models implicitly learned these simple relationships. 465 

The parameter distributions of Par-3 show different patterns from the early/late parameters of Par-466 

1 (green vs. blue regions in Figure 7), but there are large overlaps between the coexistence 467 

parameters of Par-1 and Par-3 (orange vs. green regions, e.g., the third column in Figure 7). This 468 

indicates that the XGBoost surrogate models learned to select parameters around the parameters' 469 

space of the coexisting cases. Par-3 also tends to have a smaller parameter difference between the 470 

early and late successional PFTs in terms of 𝑆𝐿𝐴C=22 and 𝑉#$%&,C=22. However, Par-3 also shows 471 

different patterns from the coexisting parameters of Par-1, probably because the XGBoost selected 472 

parameters were also constrained by multiple observations and implicitly considered parameter 473 

tradeoffs. For example, the 𝑉#$%&,1%607 and 𝑉#$%&,0%81 of Par-3 are located in narrower ranges than 474 

the coexisting parameters of Par-1 (first two columns in Figure 6). 475 
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 476 

Figure 7. Comparison of parameter or parameter difference in Par-1 vs. Par-3 for eleven features. 477 

The diagonal plots represent each parameter's distribution, and the rest of the subplots are kernel 478 

density estimate plots. There are three groups, i.e., blue for the early/late cases of Par-1, orange for 479 

the coexisting cases of Par-1, and green for Par-3 selected by XGBoost models. 480 

  481 
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3.6 Validation of ML selected parameters 482 

ELM-FATES simulations of Exp-3 based on the ensemble parameters of Par-3 selected by the 483 

XGBoost surrogate models can better capture the observations and have more coexisting cases 484 

than Exp-1 (Figure 8). The median values of simulated variables for Exp-3 are closer to 485 

observations with relative biases closer to zero than Exp-1 (Figure 8a, blue vs. green boxes). The 486 

Exp-3 simulated variables also have more concentrated distributions than Exp-1. Compared to the 487 

skewed distribution of 𝐵𝑅148 in Exp-1 with a large proportion of early cases, Exp-3 has a more 488 

normally distributed 𝐵𝑅148 (Figure 8b). Specifically, Exp-3 has about 3.6 times more coexisting 489 

cases than Exp-1, i.e., 73.1% (1097 out of 1500) in Exp-3 vs. 20.6% (309 out of 1500) in Exp-1 490 

(Table S3). After being further constrained by observation (Table S3), one-third of the experiments 491 

(i.e., 495 out of 1500) in Exp-3 remain, and this ratio is 23.6 times more than 1.4% (21 out of 1500) 492 

in Exp-1.  493 

The XGBoost surrogate model predicted variables also match well with those simulated using 494 

ELM-FATES in Exp-3 (Figure 8, orange vs. green boxes), indicating the overall reasonable 495 

accuracy for the XGBoost model predictions. Compared to the ELM-FATES results using Par-3, 496 

the XGBoost models show better performance for ET, SH, BW, and GPP, but relatively degraded 497 

performance for AGB and 𝐵𝑅148 (Figure S5). It is consistent with the performance of the XGBoost 498 

models' training and testing results (in Section 3.3). 499 
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 500 

Figure 8. Comparison between the ELM-FATES simulations for Exp-1 and Exp-3. (a) Relative 501 

bias for simulated ET, SH, BW, GPP, and AGB. (b) Simulated 𝐵𝑅148 . XGBoost prediction 502 

represents the selected XGBoost model predictions after filtering with observation and biomass 503 

ratio (i.e., the XGB_prds, procedure "P4" in Figure 2). 504 

 505 

3.7 Parameter tradeoff for coexisting experiments 506 

Parameters of the early and late successional PFTs show tradeoffs for the coexisting experiments. 507 

Large relative differences in 𝑆𝐿𝐴, 𝑉#$%&, and 𝑊𝐷	(more negative) favor the early successional 508 

PFT, while large relative differences in 𝑀!" and 𝐿01%2 favor the late successional PFT. Therefore, 509 

in Exp-1, compared to the early and late cases, the coexisting cases have intermediate relative 510 

differences in 𝑆𝐿𝐴, 𝑉#$%&, 𝑊𝐷, 𝑀!" and 𝐿01%2 (dashed boxes in Figure 9). The coexisting cases 511 

in Exp-3 have similar patterns with intermediate relative differences in 𝑆𝐿𝐴, 𝑉#$%&  and 𝐿01%2 512 

compared to the early and late cases (solid boxes in Figure 9). However, 𝑀!" and especially 𝑊𝐷 513 

show the largest relative difference for the coexisting cases compared to the early and late cases 514 
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in Exp-3. These two parameters still show a tradeoff in determining coexisting PFTs, because 515 

larger 𝑊𝐷 favors the early PFT while larger 𝑀!" favors the late PFT. 516 

 517 

In Exp-3, the parameter spaces of the coexisting cases show large overlaps with the early/late cases 518 

(Figure S6). There are no simple correlations between these parameters to distinguish the 519 

coexisting cases from the early and late cases (also see Section 3.2). Although 𝑊𝐷C=22  of the 520 

coexisting cases still overlap with the early/late cases, when 𝑊𝐷C=22  is less than roughly –0.4 521 

(g/cm3), only coexisting cases exist (Figure S6). Nevertheless, this rule (i.e., 𝑊𝐷C=22 <–0.4) alone 522 

cannot ensure PFT coexistence (see Figure 7). 523 

 524 

Figure 9. Parameter relative difference (%) between early successional PFT and late successional 525 

PFT for Exp-1 (box with dash line) and Exp-3 (box with solid line). Parameter relative difference 526 

is calculated as, taking SLA as an example, DEF%#&'(3DEF'#)%
(DEF%#&'(GDEF'#)%)/4

× 100	(%). 527 

 528 

  529 
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3.8 Seasonal variation comparison 530 

Figure 10 shows the seasonal variations of ET, SH, BW, and GPP for observations and simulations 531 

of the finally selected 495 experiments in Exp-3 with good model performance (Table S3). Overall, 532 

the simulated ET shows a similar seasonal variation to ET observation (Figure 10a), with relatively 533 

small ET in the wet season (November–May), high ET in the dry season (June–October), and ET 534 

peaks in August. However, compared to the observations, ELM-FATES overestimates ET, 535 

especially during the wet season. The simulated SH also shows a similar seasonal variation with 536 

the SH observation except in March. ELM-FATES overestimated SH from January to May but 537 

underestimated SH from September to December (Figure 10b). Due to the discrepancy between 538 

simulated ET and SH, the model underestimates BW from September to December (Figure 10c). 539 

The simulated GPP has minor seasonal variability compared to the observed GPP. ELM-FATES 540 

overestimates GPP from June–August in the dry season, but underestimates GPP over October–541 

December. The lower GPP over June–August indicates that plants may be relatively water-stressed 542 

or energy limited during these months. However, the large ET observation over the same period 543 

implies that this site is unlikely water limited or strongly energy limited. The ELM-FATES 544 

simulations also display little water stress year-round (Figure S7). Therefore, there are likely 545 

elements of the seasonal cycle (e.g., phenological responses of photosynthetic capacity) that are 546 

not yet captured here. Additionally, tower estimates of GPP may also have large uncertainties. 547 
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 548 

Figure 10. Mean monthly observations and selected optimal ELM-FATES simulations in Exp-3 549 

for (a) ET, (b) SH, (c) BW, and (d) GPP. Each red line represents one experiment simulation (four-550 

year simulation average). The black curves are monthly climatologic averages from 2000 to 2008, 551 

and the grey shaded area represents the interannual variabilities (i.e., 𝑚𝑒𝑎𝑛 ±552 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑎𝑡𝑖𝑜𝑛). 553 

  554 
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4. Discussion 555 

4.1 Limited guidance of observed trait relationships for PFT coexistence modeling in FATES 556 

We found degraded PFT coexistence in ELM-FATES simulation when observed trait relationships 557 

are considered. More specifically, constrained by observed trait relationships, Exp-2 has fewer 558 

coexisting cases than Exp-1 which does not consider the observed trait relationships. The observed 559 

trait relationships were derived from site measurements in the species-rich tropical ecosystem 560 

where plant coexistence commonly happens (Kraft et al., 2008), which is expected to enhance the 561 

PFT coexistence simulations. This inconsistency could be due to several possible reasons. First, 562 

ELM-FATES is a typical "trait filtering" model (Fisher et al., 2018), and the realistic simulation 563 

of PFT dynamics largely depends on the fidelity with which trait tradeoff surfaces are prescribed 564 

in the model (Scheiter et al., 2012). Implicit representation of trait tradeoff in the current ELM-565 

FATES model may not be well balanced, which may differ from the observed trait relationships 566 

that lead to coexistence in the real world (at least for the ecosystem at our study site). In particular, 567 

there may be correlated tradeoffs that are unmeasured (e.g., with below ground processes, Chitra-568 

Tarak et al. 2021) but not represented in the model. A second reason could be the mismatch 569 

between different spatial scales. The observed trait relationships are derived from field 570 

measurements across tropical forests over a large region with diverse species and climate, e.g., the 571 

relationship in equation (1) is for plant species in Panama. In contrast, ELM-FATES simulations 572 

were conducted at the K34 site scale with specific species composition. Therefore, the large-scale 573 

trait relationships may not reflect the small-scale trait relationships. Wright et al. (2005) showed 574 

that trait relationships fitted for individual sites varied considerably. Third, the observed trait 575 

relationships are based on simplified equations, which may not be able to comprehensively reflect 576 

PFT coexistence. For example, although equation (2) derived from Longo et al. (2020) can reflect 577 
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the negative relationship between SLA and 𝐿01%2, the 𝑅4 of this equation is about 0.49, which may 578 

not be accurate enough to represent trait relationships. Additionally, these equations (1)~(3) do not 579 

consider the uncertainty of traits covariance. In Koven et al. (2020), the uncertainties between trait 580 

covariance were considered when sampling parameters for FATES experiments, which may be 581 

considered in future studies. 582 

 583 

4.2 Advantages of ML surrogate models on improving PFT coexistence modeling 584 

ELM-FATES simulations driven by parameters selected using the XGBoost models essentially 585 

improved PFT coexistence and better captured observations. Compared to the initial Exp-1, which 586 

was used to train the XGBoost models, the proportion of coexisting PFTs in Exp-3 reaches 73.1%, 587 

3.6 times more than 20.6% in Exp-1. Further filtering the coexistence experiments by observations, 588 

Exp-3 still has 33.0% of experiments left with good model performance, 23.6 times that of 1.4% 589 

of experiments in Exp-1 with good performance. Our ML-based approach also outperforms the 590 

empirical correlations built in Section 3.2, which only yields 32.5% of coexistence experiments 591 

and this reduces to 2.3% of experiments if further constrained by observation. The large proportion 592 

of optimal experiments selected by our ML approach also outperforms previous studies using 593 

direct filtering approaches. Buotte et al. (2021) conducted two stages of experiments to select 594 

optimal parameters for CLM-FATES modeling with two conifer species; only 0.3% (1 out of 360) 595 

of the cases met the given criteria in the first stage experiments, which increased to 5.5% in the 596 

second stage experiments. Huang et al. (2020) conducted CLM-FATES modeling with two 597 

tropical PFTs at the Tapajós National Forest sites; only one parameter set out of seventy (about 598 

1.4%) was selected with reasonable fractions of two PFTs and minor errors compared to 599 

observations. In addition, the parameter selection procedures of these two studies require some 600 
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degree of subjective decision making and expert knowledge. On the other hand, our ML-based 601 

approach takes a more objective procedure, and little expert knowledge is required except for the 602 

initial determination of the parameter reference ranges. Importantly, we believe this approach can 603 

be repeatable as, e.g., model developments lead to changes between the parameter values and 604 

model predictions of forest structure and function, and can be used to define constrained ensemble 605 

values that will allow assessment of confidence in model predictions. Even though simulating 606 

coexistence of different plants may not be a big concern for individual-based DGVMs , e.g., 607 

LPJmL-FIT (Sakschewski et al., 2015, 2016) and TROLL (Maréchaux and Chave, 2017), our 608 

approach also could be applied to the selection of key parameters that regulate vegetation dynamics 609 

in these models. 610 

 611 

Our study also reproduced the observations satisfactorily. Holm et al. (2020) conducted the ELM-612 

FATES simulation with only one PFT considered at the same K34 site. Our study yields better or 613 

similar performance in the magnitude of AGB, and the magnitude and seasonal variation of GPP, 614 

ET, SH, and BW (Table 2 and Figure 3 in Holm et al. 2020 vs. Figures 8 and 10 in this study). It 615 

should also be noted that the overestimation of simulated energy fluxes (latent heat and SH) from 616 

January to May could be associated with the energy-related processes (e.g., energy partition, 617 

surface albedo) in ELM-FATES. Other potential reasons could be related to the uncertainties in 618 

atmospheric forcing and the common issue of incomplete energy budget closure at eddy covariance 619 

towers (Wilson et al., 2002; Foken, 2008; Rocha et al., 2009). 620 

 621 

Compared to the predictions of GPP, ET, SH, and BW simulated by ELM-FATES, the XGBoost 622 

surrogate models show slightly degraded performance in predicting the simulated 𝐵𝑅148 and AGB 623 
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(Figures 5 and S5). Three parameters (𝑉#$%&,1%607, 𝑆𝐿𝐴1%607, and 𝐿01%2,1%607) mainly control the 624 

predictions of ET, SH, BW, and GPP, while eight features are crucial for predicting AGB and 625 

𝐵𝑅148. Even though the XGBoost algorithm has an excellent ability to capture complex nonlinear 626 

relationships, it does not predict well the PFT competition related variables of AGB and 𝐵𝑅148 627 

because the physical model cannot robustly predict coexisting PFTs due to the higher 628 

dimensionality of predicting PFT composition as compared to other ecosystem variables. 629 

Therefore, even though the XGBoost surrogate models essentially improve plant coexistence 630 

modeling, further studies are still needed to improve the emulation of PFT competition related 631 

variables. Other approaches that have been applied in DGVMs but not specifically for PFT 632 

coexistence modeling, for example, the generalized likelihood uncertainty estimation (GLUE) 633 

approach (Zhang et al., 2022) and the Bayesian model emulation approach (Fer et al., 2018), could 634 

provide alternative ways. Additionally, the adoption of deep learning algorithms and the 635 

consideration of additional mechanisms in FATES are also advocated. 636 

 637 

4.3 Trait tradeoffs between coexisting PFTs 638 

Trait-related parameters show tradeoffs between early and late successional PFTs for the ELM–639 

FATES simulated coexisting experiments. The relative differences between the two PFTs in 𝑆𝐿𝐴, 640 

𝑉#$%&, and 𝑊𝐷 complementarily coordinate with the relative difference in 𝑀!" and 𝐿01%2, hence 641 

avoiding competitive exclusion (Figure 9). These ELM-FATES reflected tradeoffs are consistent 642 

with the niche-based species coexistence mechanisms of environmental filtering and niche 643 

partitioning (MICHALKO and PEKÁR, 2015; Adler et al., 2013). On the one hand, in the 644 

coexisting cases, the relative differences between the two PFTs' parameters should not be 645 

considerable. For example, a large difference in SLA more likely favors the early cases (green 646 
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dash box in Figure 9). This is related to environmental filtering in which coexisting species require 647 

some degree of convergence in strategy to survive and persist under given environmental 648 

conditions (Cadotte and Tucker, 2017; Thakur and Wright, 2017). On the other hand, some degree 649 

of differences should exist between the two PFTs' parameters in the coexisting cases. This is 650 

related to niche partitioning to ensure either difference in resource requirements or differences in 651 

tolerance to surrounding conditions (Kraft et al., 2015; Fowler et al., 2013). Phenomenological 652 

evidence has shown that functional trait variation promotes coexistence or increases species 653 

richness (Uriarte et al., 2010; Angert et al., 2009; Adler et al., 2006; Mason et al., 2012; Ben-Hur 654 

et al., 2012). 655 

 656 

In our ELM-FATES simulations, the primary axis of competition for resources is light. The 657 

tradeoffs between the two PFTs' parameters differentiate their vertical competition in light 658 

absorption, which has been shown to strongly control tropical forest community composition 659 

(Farrior et al., 2016; Poorter et al., 2003). Even though the early PFT has a shallower rooting depth 660 

than the late PFT, there is no critical dry condition during our simulation period (i.e., corresponding 661 

to values of the water stress factor (BTRAN) close to 1.0 in Figure S7). Therefore, competition for 662 

water resource access negligibly contributes to PFT coexistence in this study. Previous tropical 663 

studies also revealed these coexistence mechanisms. At a tropical forest site in eastern Ecuador, 664 

Kraft et al. (2008) found that cooccurring trees are often less ecologically similar, and both 665 

environmental filtering (different topographic habitats of ridgetops vs. valley) and niche 666 

differentiation simultaneously contribute to species coexistence. Swenson & Enquist (2009) also 667 

found that at small spatial scales in a tropical forest, most traits of coexisting species were under-668 
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dispersed, consistent with environmental filtering, while the seed mass and maximum height were 669 

over-dispersed, reflecting niche partitioning. 670 

 671 

4.4 Limitations and further model development  672 

Some limitations exist in our experiments. Niche partitioning is a critical aspect of promoting 673 

species coexistence, which is closely related to spatial heterogeneity, temporal heterogeneity, 674 

disturbances (e.g., nature enemy, fire), and resource partitioning (Adler et al., 2013). In our current 675 

ELM-FATES simulations, some processes that have been or are being developed in the model are 676 

not considered. These processes include nutrient limitation (Holm et al., 2020), fire disturbance 677 

(Fisher et al., 2015), subsurface lateral flow (Fang et al., 2022), and plant hydraulics (Chitra‐Tarak 678 

et al., 2021; Li et al., 2021). Ignoring these processes could limit the potential of niche partitioning 679 

among PFT in our ELM-FATES simulations. Topography has been recognized as an essential 680 

spatial heterogeneity factor for tropical forests, but it is not considered in ELM-FATES (Kraft et 681 

al., 2008; Costa et al., 2022). For example, Fang et al. (2022) coupled a three-dimensional 682 

hydrology model (ParFlow) with ELM-FATES and found that lateral flow plays a prominent role 683 

in governing aboveground biomass, and Cheng et al. (2021) also found a critical role for subsurface 684 

hydrology on coexistence. As these processes are added to the model, the reproducibility aspects 685 

of the XGBoost method to identify PFT combinations that match a broad range of criteria will be 686 

particularly important. 687 

Lacking other features or processes could also affect PFTs coexistence in the current FATES. For 688 

example, plant trait plasticity, that plants can adjust their morphological and/or physiological traits 689 

to better adapt to the environment (Nicotra et al., 2010; Bloomfield et al., 2018; McDowell et al., 690 

2022), is also not well considered in FATES. Leaf traits such as 𝑉#$%& and SLA do vary vertically 691 
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through the canopy in FATES, via a prescribed relationship described by Lloyd et al., 2010. Liu 692 

and Ng (2019) found that the SLA of a desert shrubland is significantly correlated with seasonal 693 

water availability. Additionally, FATES only considers the inter-PFT variance of functional traits 694 

(e.g., different 𝑉#$%&  for early and late PFT). However, studies revealed that trait variations 695 

commonly exist within and between species (Wright et al., 2005; Engemann et al., 2016; Meng et 696 

al., 2015; Dong et al., 2020; Siefert et al., 2015), which play a vital role in maintaining plant 697 

diversity (Violle et al., 2012; Lu et al., 2017). Reproductive features that enhance competitive 698 

exclusion tendencies have been illustrated to affect coexistence (Maréchaux and Chave, 2017; 699 

Fisher et al., 2018). Hanbury‐Brown et al. (2022) discussed the importance of the representation 700 

of forest regeneration, including improving parameters and algorithms for reproductive allocation, 701 

dispersal, seed survival and germination, environmental filtering in the seedling layer, and tree 702 

regeneration strategies adapted to wind, fire, and anthropogenic disturbance regimes. Besides, both 703 

growth-survival and stature-recruitment tradeoffs are critical to accurately predict successional 704 

patterns in tropical forest structure and competition (see details in Rüger et al., 2020), which should 705 

also be better considered in future model development. Furthermore, measured plant traits are 706 

increasingly available, e.g., the TRY datasets (Kattge et al., 2020) can be used to improve the 707 

model process and parameterizations. Future studies on properly and adequately using these 708 

datasets to guide DGVMs parameterizations are advocated.  709 
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5. Conclusions  710 

In this study, we explored two possible solutions to improve PFT coexistence modeling in a cohort-711 

based model (ELM-FATES): (1) using plant trait relationships established from field 712 

measurements and (2) using machine learning based surrogate models to optimize parameters. 713 

Multiple ensembles of ELM-FATES experiments were conducted over a tropical forest site at 714 

Manaus, Brazil. We found that considering the observed trait relationships (Exp-2) slightly 715 

improves the simulations of water (ET), energy (SH and BW), and carbon (GPP, AGB) variables 716 

when compared against observations, but degrades the simulation of PFT coexistence. Based on 717 

Exp-1, the XGBoost surrogate models were built to optimize the ELM-FATES parameters by 718 

integrating the observations (i.e., ET, SH, BW, GPP, and AGB) and PFT coexistence criteria (i.e., 719 

PFT biomass ratio). Exp-3 with parameters selected by the ML-surrogate models vastly improves 720 

the ELM-FATES simulation of PFT coexistence, and also better reproduces the annual means and 721 

seasonal variations of ET, SH, BW, GPP, and the filed inventory of AGB. This study demonstrates 722 

the benefits of using machine learning models to improve the modeling of PFT coexistence in 723 

ELM-FATES and modeling of tropical forest environments, with important implications for 724 

modeling the response and feedback of ecosystem dynamics to climate change. Our results also 725 

suggest that adding additional mechanisms of species competition in FATES is also critical for 726 

robust modeling of coexisting PFTs. 727 

  728 
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Code and Data Availability. The ELM-FATES source code, related surface and domain data, and 729 

forcing data used in this study are archived on Zenodo (Li et al., 2022, 730 

https://doi.org/10.5281/zenodo.7319876 ). The observational reference datasets of GPP, ET, SH, 731 

BW, and AGB are obtained from Holm et al. (2020). The forcing data is available from Oak 732 

Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), LBA-ECO CD-733 

32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999-2006, V2, 734 

https://daac.ornl.gov/LBA/guides/CD32_Fluxes_Brazil.html.  735 
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